
OCALA: An Architecture for Supporting Legacy
Applications over Overlays

Dilip Joseph Jayanthkumar Kannan Ayumu Kubota
Univ. of California at Berkeley Univ. of California at Berkeley KDDI Labs

Karthik Lakshminarayanan Ion Stoica Klaus Wehrle
Univ. of California at Berkeley Univ. of California at Berkeley Univ. of Tübingen

Report No. UCB/CSD-005-1397

Computer Science Division (EECS)
University of California
Berkeley, California 94720

OCALA: An Architecture for Supporting Legacy
Applications over Overlays

Dilip Joseph Jayanthkumar Kannan Ayumu Kubota
Univ. of California at Berkeley Univ. of California at Berkeley KDDI Labs

Karthik Lakshminarayanan Ion Stoica Klaus Wehrle
Univ. of California at Berkeley Univ. of California at Berkeley Univ. of Tübingen

Abstract
The ever increasing demand of new applications cou-
pled with the increasing rigidity of the Internet has led
researchers to propose overlay networks as a means of
introducing new functionality in the Internet. However,
despite sustained efforts, few overlays are used widely.
Providing support for legacy Internet applications to ac-
cess such overlays would significantly expand the user
base of the overlays, as the users can instantly benefit
from the overlay functionality.

We present the design and implementation of
OCALA, an Overlay Convergence Architecture for
Legacy Applications. Unlike previous efforts, OCALA
allows users to access different overlays simultaneously,
as well as hosts in different overlays to communicate
with each other. In addition, OCALA reduces the imple-
mentation burden on the overlay developers, by factoring
out the functions commonly required to support legacy
applications, such as tapping legacy traffic, authentica-
tion and encryption. Our implementation of OCALA as
a proxy requires no changes to the applications or op-
erating systems. We currently support two overlays, i3
and RON, on Linux and Windows XP/2000 platforms.
We (and a few other research groups and end-users) have
used the proxy over a eleven-month period with many
legacy applications ranging from web browsers to remote
desktop applications.

1 Introduction
Over the past two decades, to meet the demands that
new applications are posing on the Internet, several ar-
chitectural changes that enable new functionality (such
as mobility support, multicast, and quality of service)
have been proposed. However, despite years of sustained
effort, most of these proposals have failed to material-
ize on a large scale. One needs to look no further than
mobile IP, IP multicast, and Intserv, for some oft-cited
examples. Worse yet, as the Internet grows in size and
usage, it becomes even more resistant to change.

To circumvent the rigidity of the Internet, overlay
networks have emerged as the solution of choice for

adding new functionality without changing the exist-
ing IP infrastructure. To list just a few examples, over-
lays have been used to provide better performance
and resilience [2, 36], QoS [41], mobility [26, 49, 50],
multicast [4, 7, 17, 19, 35], content distribution [1, 13],
denial-of-service protection [3, 22], support for middle-
boxes [38, 46], and bridging multiple address spaces [5,
11, 29].

However, despite much research and the advent of
PlanetLab [32]—a large-scale testbed for experiment-
ing and deploying overlays—few overlays have gained
widespread user acceptance. For end-users to reap the
benefits of overlays, one needs to write new applications
or port existing ones since many of these overlays come
with their own API. Though there have been successful
overlay-specific applications (such as vic/vat [25, 43] for
the MBONE [9], and more recently, file sharing applica-
tions such as KaZaa [21]), these applications represent
only a small fraction of all applications used by end-
users. Porting legacy applications such as ssh and web
browsers is not only a painstaking task, but may not be
even an option if the source code is unavailable.

A complementary approach to developing applications
is to provide support for unmodified legacy applications
by using a substrate that bridges the legacy applications
and the overlay. Allowing legacy applications to instantly
take advantage of the overlay functionality (e.g., mobil-
ity, resilience) would significantly expand the user base
of the overlays. While there are several existing solutions
that take this approach [2, 26, 40, 50], unfortunately, they
have some important limitations. First, they do not pro-
vide inter-operability, that is, they do not enable commu-
nication across overlays. In a world where many overlays
coexist, inter-operability across overlays is not only de-
sirable but arguably necessary [31]. Finally, each over-
lay has to implement its own substrate, a non-trivial and
time-consuming task.

We present the design and implementation of
OCALA, an Overlay Convergence Architecture for
Legacy Applications, which addresses these two limi-

1

tations. OCALA allows users to access different over-
lays simultaneously, and provide inter-operability by al-
lowing users to communicate across multiple overlays.
In addition, OCALA reduces the implementation burden
on the overlay developers by factoring out the functions
commonly required for supporting legacy applications,
such as capturing traffic, authentication and encryption.
Our design is centered around four main goals:

• Transparency: Legacy applications should not
break despite the fact that their traffic is relayed over
an overlay instead of over IP.

• Inter-operability: Hosts in different overlays should
be able to communicate with one another, and users
should be able to form paths that span many over-
lays. Hosts that do not participate in any overlay
should be accessible.

• Expose Overlay Functionality: Users should have
control in choosing the overlay used to send their
traffic, and should be able to leverage the overlay
functions despite using overlay-unaware (legacy)
applications.

• Security: Instead of relying on the security provided
by overlays, the architecture should provide basic
security features such as host authentication and en-
cryption.

In a nutshell, OCALA consists of an Overlay Conver-
gence (OC) layer, positioned below the transport layer in
the IP stack, that bridges legacy applications and over-
lays. The OC layer is decomposed into the overlay-
independent (OC-I) sublayer, which interacts with the
legacy applications by presenting an IP-like interface,
and the overlay-dependent sublayer (OC-D), which tun-
nels the traffic of applications over overlays. Splitting the
OC layer allows us inter-operability across multiple over-
lays. To realize our design, we borrow many techniques
and protocols from the literature, such as address virtu-
alization [15, 26, 40, 42,49, 50], DNS capture and rewrit-
ing [13, 29, 33, 49] and SSL [14].

The current design of OCALA focuses on routing
overlays [2, 26, 36, 38, 41, 46], that is, overlays that offer
an end-to-end packet delivery service similar to IP. While
OCALA enables legacy applications to take advantage of
most routing overlay functions such as anycast, mobility,
QoS, route optimizations and middleboxes, currently it
does not support some functions such as multicast. With
multicast, hiding the fact that there are multiple receivers
to the sender may require modifications to transport layer
functions such as congestion control. OCALA is placed
below the transport layer and thus cannot provide such
functionality.

Our implementation of OCALA as a proxy requires
no changes to applications or operating systems. We have
implemented the OC-D sublayer for two overlays, i3 and

RON, on Linux and Windows XP/2000 platforms. In our
experience, we found the OC-D sublayer for both i3 and
RON to be easy to implement. To illustrate the utility
of our design, we have built and deployed a variety of
applications, such as an intrusion-detection middlebox,
overlay composition, secure Intranet access, and traver-
sal of Network Address Translation (NAT) boxes. The ul-
timate goal of our implementation is, of course, to reach
the end-users. The feedback we have received so far is
encouraging especially in the case of the NAT traversal
application.

The main contribution of this paper is the overall ar-
chitecture and the implementation of this architecture as
a proxy. To the best of our knowledge, this is the first
solution that allows legacy applications running on the
same machine to use different overlays at the same time,
and allows hosts in different overlays to communicate
with each other.

The rest of the paper is organized as follows. We
present an overview of the architecture in Section 2 and
a detailed goal-driven design in Section 3. The overlay-
specific modules are presented in Section 4. We discuss
the applications we developed in Section 5. We present
implementation details in Section 6 and evaluation in
Section 7. We finally present related work in Section 8,
lessons from our initial deployment in Section 9, and
conclude in Section 10.

2 Design Overview

We present the overlay model and a brief overview of the
overlay convergence architecture.

2.1 Overlay Model

In this paper, we focus on routing overlays, i.e., over-
lays that offer a service model of end-to-end packet de-
livery similar to IP, as opposed to overlays that store
data (e.g., Oceanstore [23]). Examples of routing over-
lays include those that aim to improve Internet rout-
ing such as RON [2], Detour [36], OverQoS [41], over-
lays that provide diverse functionality such as mobil-
ity [26,49,50], multicast [17,19] or bridging multiple IP
address spaces [5,29], as well as recent network architec-
tures such as Delay Tolerant Networks [10], i3 [38] and
Delegation Oriented Architecture (DOA) [46].

Each end-host E in an overlay has an overlay-specific
identifier (ID), which is used by other end-hosts to con-
tact E through the overlay. While in the simplest case
an overlay ID can be the host’s IP address (e.g., RON),
many overlays use other forms of identifiers (e.g., i3
and DOA use flat IDs). Since overlays IDs may not be
human-readable, end-hosts may also be assigned names
for convenience.

2

Overlay Convergence (OC) LayerOverlay Convergence (OC) Layer

Overlay
(DOA, DTN, HIP, i3 RON, …)

Overlay
(DOA, DTN, HIP, i3 RON, …)

Legacy Applications
(ssh, firefox, explorer, …)

Legacy Applications
(ssh, firefox, explorer, …)

Transport Layer
(TCP, UDP, …)
Transport Layer
(TCP, UDP, …)

OC Independent
(OC-I) Sublayer

OC Dependent
(OC-D) Sublayer

Figure 1: The overlay convergence (OC) layer.

2.2 Overlay Convergence Layer

Conceptually our solution interposes a layer, called the
overlay convergence (OC) layer, between the transport
layer and the overlay network layer (see Figure 1). The
OC layer replaces the IP layer in the Internet’s protocol
stack. It consists of two sublayers: an overlay indepen-
dent (OC-I) sublayer, and an overlay dependent (OC-D)
sublayer.

The main functions of the OC-I sublayer are to present
a consistent IP-like interface to legacy applications and to
multiplex/demultiplex traffic between such applications
and various overlays. Functions common to all overlays,
such as authentication and encryption, are implemented
in the OC-I sublayer.

The OC-D sublayer consists of modules for various
overlays, each of which is responsible for setting up
overlay-specific state and for sending/receiving pack-
ets over the particular overlay. For example, in i3, the
OC-D sublayer inserts and maintains private triggers at
both end-points, while in OverQoS, it performs resource
reservation. Note that IP can be viewed as a “default”
overlay module.

Such a design allows a single host simultaneous access
to various overlays. Figure 2 shows an example in which
three applications on host A open connections via IP and
two overlays: a web browser (Firefox) uses IP to connect
to a CNN server, a chat client (IRC) uses i3 to preserve its
anonymity, and ssh uses RON for improved resilience.

The OC-I layer also allows hosts in different overlays
to communicate with each other. Figure 3 shows how
two hosts on different overlays can communicate using
an intermediate host (B), called a gateway, that resides
on both networks.

We refer to the communication channel between two
end-hosts at the OC-I layer as a path, and to the com-
munication channel between two end-hosts at the OC-D
layer as a tunnel. In the example in Figure 3 the path be-
tween the two end-hosts is (A, B, C), and this path con-
sists of two tunnels at the OC-D layer, (A, B) and (B, C),
respectively.

OC-IOC-I

i3

FirefoxFirefox
OC-IOC-I

RON

sshssh

www.cnn.com
RON

IRCIRC sshssh

…

O
C

-D

i3
RON

Internet

…
OC-IOC-I

i3

IRCIRC

…

Host A

Host B

Host C

IP

Figure 2: Three applications on host (A) which establish con-
nections via IP and two overlays: RON and i3.

Analogous to the network layer that bridges multiple
link layer domains in an IP network, the OC-I layer in
our architecture bridges multiple OC-D layers together.
Indeed, the use of OC-I gateways to connect hosts be-
longing to different overlays is similar to the way IP
routers (gateways) connect hosts belonging to different
link layer domains.

3 Detailed Architecture
In this section, we present a goal-driven description of
OCALA, by showing how our design achieves our four
goals: (1) transparency, (2) inter-operability, (3) exposing
overlay functionality, and (4) security. Achieving these
design goals is challenging as they have conflicting re-
quirements. For instance, on one hand, we want to ex-
pose the rich functionality provided by overlays to users,
while on the other, we have to preserve the narrow IP in-
terface exposed to the legacy applications. In our design,
we aim to find a sweet spot in achieving these opposing
goals.

3.1 Goal 1: Transparency
The basic goal in our system, as with any system that
provides support for legacy applications, is to ensure that
legacy applications are oblivious to the existence of over-
lays. Ideally, such applications should work without any
changes or re-configuration when the IP layer is replaced
by the OC layer.

Our design is fundamentally constrained by how a
legacy application interacts with the external world.
Most legacy applications make a DNS request, and then
send/receive IP packets to/from the IP address returned
in the DNS reply. Hence, there are two possibilities for
specifying which overlay should handle application traf-
fic, if any: (a) using the fields in the IP headers such as
IP addresses and port numbers, or (b) DNS-like names.

In the first approach, a user can specify rules on
how packets should be processed using the fields in
the IP header. For example, the user can employ a
configuration file to specify that packets sent to ad-
dress 64.236.24.4 and port number 80 should

3

OC-IOC-I

i3 RON

Appl.Appl.

OC-IOC-I

i3 RON

Appl. Appl.

OC-IOC-I

i3 RON

Host B (bar.i3)

Host C (foo.ron)

i3 RON

Host A

Figure 3: Bridging multiple overlays.

be forwarded through RON, while packets sent to
207.188.7.x should be forwarded through OverQoS.
RON is an example of overlay that uses this approach.

In the second approach, users can encode which over-
lay should handle the application’s traffic in the DNS re-
quests. We assume that each overlay host has a unique
name, called overlay name, of the form foo.ov, where ov
specifies the overlay, and foo is a name unique to that
overlay. On receiving a DNS request from the application
for an overlay name, the OC layer sets up state which al-
lows it to intercept and forward all the subsequent pack-
ets from the application to host foo.ov through overlay
ov.

The main advantage of relying solely on the informa-
tion in the IP headers is that it works with all Internet ap-
plications, since at the very least, any application sends
and receives IP packets. On the other hand, using DNS
names has several advantages. First, DNS names can be
used to identify hosts without a routable IP address such
as NATed hosts. This property is fundamental to over-
lays that bridge multiple address spaces [8, 29]. Second,
names are human-readable and hence easier to remember
and use. Third, the user does not need to know the IP ad-
dress of the destination in advance, which is not feasible
in some cases. Indeed, when an overlay provides support
for content replication, the IP address of the server that
ultimately serves the content may not be known to the
users before they actually run the application.

Since the vast majority of popular applications use
DNS names anyway, in our implementation, we specify
how the packets should be handled at the OC layer using
DNS names.1

3.1.1 Control Plane: Path Setup
In this section, we describe the operations performed by
the OC layer when it receives a DNS request. The final
result of these operations is to establish an end-to-end
path at the OC-I layer and to set up the state required to
handle the application’s traffic. While in general a path

1Another solution that we plan to investigate in the future is
to intercept the first packet of an application and then prompt
the user to specify how the application’s traffic should be han-
dled.

Legacy App.

Transport Layer

OC-I LayerOC-I Layer

OC LayerOC Layer

1 DNSresp(oc_handle = IPfoo.ov)DNSreq(foo.ov)

Name Res. Service
(local addrbook,

DNS, OpenDHT…)

2

3

4
5

Host A

Host B (foo.ov, IDB)

Overlay
(DTN, i3, RON)

i3 RON …

setup(foo.ov)

resolve(foo.ov)

IDB
overlay specific
setup protocol

tunnel_d = tdAB

7

6

Figure 4: Tunnel setup protocol.

consists of several tunnels at the OC-D layer, in this sec-
tion we consider a single-tunnel path. We generalize the
description to multi-tunnel paths in Section 3.2.

Consider a legacy application on host A that wants to
communicate with a remote legacy application at host B,
called foo.ov (see Figure 4). The application first issues a
DNS request for foo.ov, which is intercepted by the OC-
I sublayer. On receiving such a request, the OC-I layer
associates a locally unique path descriptor, pdAB , and
store the mapping between the name and the descriptor
(foo.ov→pdAB).

The OC-I sublayer then invokes the corresponding
module in the OC-D sublayer to setup a tunnel to foo.ov
through overlay ov. This tunnel can be then used to relay
the traffic of all local applications that communicate with
foo.ov.

In turn, the OC-D sublayer invokes a resolution ser-
vice to obtain the overlay ID (IDB) of foo.ov. Exam-
ples of resolution services are DNS (used in RON),
OpenDHT [20] (used in DOA), or using a local address
book (used in i3). After the OC-D sublayer resolves the
name, it instantiates the necessary state for communicat-
ing with foo.ov, and returns a pointer to this state, the
tunnel descriptor, tdBA, to OC-I. For example, in i3, the
setup phase involves negotiating a pair of private triggers
with the remote end-host, and instantiating the mapping
state between foo.ov and the private trigger IDs. The path
and tunnel descriptors represent the state handles at the
OC-I and OC-D layers respectively; path descriptors are
needed since multiple paths might share the same tun-
nels.

On receiving the tunnel descriptor tdAB from OC-D,
the OC-I sublayer stores the mapping (pdAB→tdAB),
and returns an OC handle (oc handle) to the legacy ap-
plication in the form of a local scope IP address, IPAB .
To maintain compatibility with IP, IPAB belongs to an
unallocated address space (e.g., 1.x.x.x [18]).

Similarly, remote host B allocates a descriptor for the
tunnel at the OC-D sublayer (tdBA), and a descriptor
(pdBA) and an OC handle (IPBA). Figure 5 shows the

4

Overlay
(DTN, i3, RON)

“foo.ov”
�

pdAB
pdAB � IPAB
pdAB � pdBA
pdAB

�
tdAB

tdAB
�

IDB

Legacy App.

Transport Layer

IPAB data

pdBA dataIPAB

pdBA dataIPABIDB

pdBA � IPBA
pdBA � pdAB
pdBA

�
tdBA

tdBA
�

IDA

Legacy App.

Transport Layer

IPBA data

pdBA dataIPAB

Host A (IDA) Host B (foo.ov, IDB)

tdBA,

OC-I

OC-D OC-D

OC-I

Figure 5: Forwarding a data packet from host A to B. The
mappings used to modify the packet are in bold.

state instantiated at both hosts A and B during the setup
protocol.

3.1.2 Data Plane: Packet Forwarding
The application at host A addresses packets destined to
foo.ov to IPAB , the OC handle returned by the OC-
I sublayer (see Figure 5). The OC-I sublayer retrieves
the state associated with this handle, and appends the
path descriptor of the destination pdBA to the packet,
before handing it off to the OC-D layer to be sent over
tunnel tdAB . The OC-D sublayer, using its tunnel state,
sends the packets to foo.ov using the overlay identifier,
IDB . At the destination, the packet is eventually handed
to the OC-I sublayer, which uses the path descriptor in
the header to demultiplex the packet. Before sending the
packet to the application, the OC-I sublayer rewrites the
destination address of the packet to IPBA, the local OC
handle corresponding to the path from A to B.

As evident from this description, the constraint im-
posed by supporting unmodified legacy applications
leaves us with little choice but to overload the semantics
of application-level names and IP addresses. We discuss
the limitations of overloading names and addresses on
transparency in Section 3.5.

3.2 Goal 2: Inter-operability
When multiple routing overlays are deployed, a potential
undesirable side-effect is that hosts in different overlays
may not be able to reach one another. For example, i3 al-
lows NATed hosts to act as servers, but such servers will
be unreachable through RON. Even in the Internet today,
hosts in different IP address spaces cannot communicate
with one another [29]. Moreover, it is likely that some of
the Internet hosts will not participate in routing overlays.
For instance, it might be very hard to convince CNN to
join some routing overlay or to deploy the OC-I layer on
their servers. Inter-operability with such legacy hosts is
also important.

…
pd1 � pd2
…

Host A

O
C

-I

Appl.

…
pd3 � pd’2
…

Host C (foo.ron)

O
C

-I

Appl.

…
pd2

�
pd3

pd’2
�

pd1
…

Host B (bar.i3)

O
C

-I

i3

O
C

-D

i3 RON
i3 RON

RON

pd2 IP pkt pd2 IP pkt pd3 IP pkt pd3 IP pkt

Figure 6: Forwarding a data packet from host A to C via gate-
way B (at the OC-I layer).

Our architecture can naturally provide inter-
operability at the OC-I layer. Any node implementing
the OC-I layer can act as a gateway between different
overlays in the same way an IP router acts as a gateway
between multiple links. In addition, we can provide
inter-operability between overlay and legacy hosts by
designing special OC-D modules that send and receive
legacy IP traffic.

3.2.1 Bridging Multiple Overlays
Consider a host A in the i3 overlay that wishes to con-
tact a host C in the RON overlay (See Figure 3). We can
achieve this by deploying a host (gateway) B that resides
in both i3 and RON, and which runs the OC-D modules
for both overlays. Host A can then setup a two-hop path
to C by using the gateway as an intermediate hop. In the
case of a multi-hop path, the setup protocol creates tun-
nels between consecutive hops, and sets up the routing
state at the OC-I layer of the intermediate hops. We give
the details of the protocol next.

Assume that the overlay name of host C is foo.ron,
while the overlay name of gateway B in i3 is bar.i3. To
communicate with host C, an application at host A is-
sues a DNS request for foo.ron bar.i3. Note that we use
the underscore character “ ” to separate the host names
along the path2 , and list these names in the reverse order.
On receiving the DNS request, the OC-D layer at host
A resolves the last name that appear in the DNS name,
bar.i3, to host B, and opens a tunnel to host B. This op-
eration is identical to the tunnel setup in Section 3.1.1.
Once this tunnel is setup, the OC-I at A asks its peer at
B to setup the rest of the path to the destination C recur-
sively. Hence, B will setup its own tunnel to C.

At the end of the setup protocol, hosts A and C
maintain the path descriptors pd1 and pd3 respectively,
while the gateway C maintains two descriptors pd2, pd′

2
,

one for each direction of the path. The correspond-
ing mappings are as follows: host A maintains the

2According to the DNS syntax “ ” cannot appear in the host
names; it can only appear in the domain names.

5

mapping (pd1→pd2), host B maintains the mappings
(pd2→pd3, pd′

2
→pd3), and host C maintains the map-

ping (pd3→pd1) (see Figure 6).
On intercepting a packet sent to pd1, the OC-I layer

at host A appends pd2 to the packet’s header (see Fig-
ure 6). When host B receives this packet, it replaces
pd2 with pd3 and forwards it to host C using the tunnel
between these two hosts. Thus, the routing at the OC-
I layer is similar to the label-switching protocol used
in MPLS [34]. Also, note that a tunnel can belong to
more than one path. For instance, two paths (A,C,B) and
(A,C,D) can share the same tunnel from A to C.

3.2.2 Legacy Gateways

Legacy gateways are similar to overlay gateways except
that one of the tunnels is over IP to a legacy host that
does not participate in any overlay natively and does not
run the OC-I layer. Thus, overlay functionality, such as
improved routing, will be available only on the tunnel es-
tablished over the overlay (between an overlay host and
the gateway).

Legacy server gateway. The legacy server (LS) gate-
way allows an overlay-enabled client to contact a legacy
server (see Figure 7(a)). Functionally, the LS gateway
runs a OC-I layer over an OC-D module (say i3) and a
special OC-D module called LegacyServerIP (or LSIP).
The setup protocol is similar to that for an overlay gate-
way. Consider a overlay host connecting to cnn.com
through the LS gateway. The OC-I layer at the LS gate-
way forwards such setup requests to the LSIP module.
The LSIP module now behaves like a NAT box with re-
spect to the server. It first resolves the name cnn.com
through DNS and allocates a local port for this tunnel.
Packets sent to the server are rewritten by changing the
source address to that of the LS gateway, and altering the
source port to be the allocated local port. The local port is
then used to multiplex incoming packets, which are then
sent to the OC-I layer with the appropriate handle.

Legacy client gateway. The legacy client (LC) gate-
way allows overlay servers to offer their services to
legacy clients (see Figure 7(b)). Functionally, the LC
gateway runs a OC-I layer over an OC-D module (say
i3) and a special OC-D module called LegacyClientIP
(or LCIP). In addition, the client is configured to use the
LC gateway as its DNS server. The LCIP module thus
intercepts DNS queries from the client, and dispatches
them to the OC-I layer which initiates a tunnel over the
overlay. The LCIP module also sends a DNS reply with
a Internet routable address to the client, captures packets
sent by the legacy client to that address, and sends them
over the overlay. Any client can now contact the machine
foo.i3 from any machine provided her DNS server is set
to the address of the LC gateway. The design of our LC
gateway is similar to that of AVES [29].

OC-I

Appl.

OC-I

OV LSIP

Legacy gateway

Overlay (OV) Internet

Overlay client

OV

Legacy server

OC-I

Appl.

OC-I

LCIP OV

Legacy gateway

Overlay (OV)Internet

Legacy Client

OV

Overlay server
(a)

(b)

Figure 7: (a) An overlay client connecting to a legacy server.
(b) A legacy client connecting to an overlay server.

Note that legacy gateways have two different OC-D
modules LSIP and LCIP to interface with legacy servers
and clients, unlike an overlay gateway where a single
module can be used to contact both overlay servers and
clients. In the case of the legacy client gateway, the fact
that the addresses returned by the gateway should be
routable considerably limits the number of clients that
can connect simultaneously [29].3

3.3 Goal 3: Customize Overlay Functionality
One of the main goals of overlays is to allow users to
customize the functions that they provide. For example,
RON allows users to choose the metric based on which
the paths are optimized, OverQoS allows users to spec-
ify QoS parameters, and architectures like i3 and DOA
allow users to explicitly interpose middleboxes on the
path. These examples illustrate that for better flexibil-
ity, users should be able to customize the preferences for
each tunnel along a path. Preferences of interest include
both overlay-specific options (e.g., use latency optimized
paths for RON or use a specific middlebox) and overlay-
independent options (e.g., identity of gateways, perform
end-to-end authentication).

Given the limited options that a legacy application has
to communicate its preferences to the OC layer, we have
little choice but to encode them in the DNS name as well.
In particular, an overlay name of a host can also encode
the preferences of the tunnel to that host. For instance,
with OverQoS, a user can make an ssh connection to
foo.delay50ms.overqos instead of foo.overqos.

The encoding of tunnel preferences are overlay-
specific: OC-I looks only at the name’s suffix, overqos,
to identify the OC-D module to which it needs to for-
ward the setup request; it is the role of the OverQoS

3If we were to support only HTTP traffic, we could remove
this limitation by having gateways use the DNS names in the
HTTP requests to demultiplex the clients’ traffic.

6

OC-D module to parse the prefix, foo.delay50ms. An
overlay is free to encode its preferences any way it
wants as long as it does not include “ ” (recall this
character is used to separate different overlay names).
Furthermore, there is an one-to-one mapping between
an overlay name and a tunnel. If a user makes a con-
nection to foo.delay50ms.overqos and another one to
foo.bandwidth1Mbps.overqos, the OC-D layer will cre-
ate two tunnels to foo, one for each name.

To encode overlay-independent preferences, we use
a special domain name oci. Consider the example in
Figure 3. A user on host A who wishes to connect
to host C using the telnet application can use DNS
name bar.shortcut.i3 foo.mindelay.ron encrypt.oci. Op-
tions shortcut and mindelay are specific to i3 and RON
respectively, and are used to optimize latency in each
overlay. The option encrypt.oci requests the OC-I layer
to provide a encrypted channel to the end-host (foo.i3),
thus making telnet secure.

While using DNS names to encode preferences allows
users to choose preferences at run-time, this flexibility
does not come for free. The DNS names are limited
to 255 characters, and typing a long list of preferences
may be inconvenient. Furthermore, the user may use the
same preferences for many applications, in which case it
makes little sense to type the same preferences over and
over again. A configuration file that contains preferences
for names based on regular expressions is an alternative
we allow that trades off flexibility for ease of use. For ex-
ample, a user that wishes to send all traffic to the domain
company1.com through a middle-box i3 M can specify
the rule: *.company1.com ⇒ *.company1.com M.i3 .

Another advantage that configuration files have over
DNS names is that some legacy applications may per-
form application-specific interpretation of DNS names
which may interfere with our mechanism of encoding
preferences. For example, the HTTP protocol interprets
DNS names as part of a URL and thus includes domain
names in its ”GET” request. Consider the case when
a browser connects to cnn.com.ip legacygateway.i3 to
contact CNN over i3. The domain name in the URL of
the ”GET” request does not match cnn.com, so the http
server would return a error. In this case, a configura-
tion rule that specifies that all DNS names of the form
*.cnn.com should be sent via the legacy gateway, would
avoid this problem. This also ensures that various ele-
ments, such as images, that are specified as URLs in the
html page, will also be downloaded through the same
tunnel used to retrieve the web page.

On receiving a setup request for an overlay name, the
OC-D sublayer reads the preferences associated with the
name (if any) from the configuration file, before pro-
ceeding with the setup operation. In processing overlay-
specific preferences for setting up a middlebox, the OC-

OC-IOC-I

i3

Appl.Appl.

OC-IOC-I

i3

Appl.Appl.

OC-IOC-I

Host M (mbox.i3) Host B (foo.i3)

i3

Host A

middle
box

middle
box

i3

Figure 8: Interfacing a middlebox.

D module layer may need to communicate through the
OC-I layer to a middlebox application. We now describe
how this is achieved.

3.3.1 Interfacing Middlebox Applications
Several new network architectures [38, 46] provide sup-
port for middleboxes, by allowing both the sender and
the receiver to explicitly insert middleboxes on the data
path. We briefly describe how we support this function-
ality.

Consider the case of a sender-imposed middlebox
where a host A wishes to contact a host B through a
middlebox M (see Figure 8). The only difference from
the operation of a gateway is that the middlebox mod-
ule (say, a transcoder) running at M should be allowed
to perform arbitrary transformations on the data sent by
one end-point before forwarding it to the other. In our de-
sign, we achieve this by requiring the middle-box mod-
ule to implement a routing overlay interface (similar to a
OC-D). This interface is used by the OC-I layer to send
and receive packets from the middlebox module. We use
a configuration file at M to specify to the OC-I layer that
communication to B (foo.i3) should be routed through
the middlebox module. The protocol when the middle-
box is imposed by the receiver is similar.

3.4 Goal 4: Security
Since security is important for many applications, we
provide basic security mechanisms at the OC-I sublayer,
rather than leaving each overlay to implement these
mechanisms in their OC-D module. In particular, the
OC-I sublayer offers the options of authentication and
encryption, both of which operate agnostic of the over-
lay used for the traffic. The OC-I layer’s security mech-
anism is based on human-readable names and operates
independently of the resolution mechanism employed by
the overlay. Note that since overlay names are OC-D spe-
cific, the OC-I has to request the overlay names it needs
to authenticate from the OC-D layer.

Our security model assumes the existence of certifi-
cation and name allocation authority from whom users
can obtain certificates associating their overlay name to
their public key. Note that such a centralized authority
is necessary for any human-readable and secure naming

7

scheme [48]. It is easy to extend our model to hierarchi-
cal name allocation schemes.

The security protocol for authenticating a host by
name is very similar to the Secure Sockets Layer pro-
tocol (SSL) [14] which relies on certificate authorities
like VeriSign. Any host that knows the public key of the
certification authority can verify these certificates. The
protocol first verifies the purported certificate of the re-
ceiver and then sets up symmetric keys. If the user has
requested for encryption, all data packets are encrypted
using these symmetric keys. Our security protocol sup-
ports both sender and receiver authentication.

The main constraint in supporting end-to-end authen-
tication through a middlebox is that the middlebox ap-
plication needs to operate on unencrypted data. Proto-
cols like SSL cannot be used since the end-hosts only
trust each other and do not trust the middlebox; hence,
we implemented our custom security protocol instead of
reusing SSL. The end-point A that interposes the mid-
dlebox certifies the public key of the middlebox, thus
delegating its authority to the middlebox. This process
is repeated over all intermediate hops and thus the other
end-point B obtains a chain of certificates. It then verifies
this chain by the name of A, and then uses the public key
of its next hop, the middlebox, to setup symmetric keys.
Thus, different sets of symmetric keys are used for the
tunnels from each point to the middlebox. The OC-I layer
at the middlebox performs decryption/encryption using
these symmetric keys before passing packets to/from the
middlebox application. This ensures that the middlebox
application only operates on unencrypted data.

3.5 Limitations
The primary goal of our design is to achieve transparency
for legacy applications while providing complete access
to overlay functions. We review how well our design
meets this goal.

3.5.1 Access to Overlay Functions
While the OC layer enables legacy applications to take
advantage of most overlay functions such as anycast, mo-
bility, QoS, route optimizations and middleboxes, cur-
rently it does not support some functions such as mul-
ticast. The main problem with multicast is that hiding
the fact that there are multiple receivers to the sender re-
quires modifications to transport layer functions such as
congestion control. OCALA is placed below the trans-
port layer and thus cannot provide such functionality.

3.5.2 Transparency
The OC-I layer overloads IP addresses and DNS names
in two ways that may break the assumptions made by
legacy applications. In contrast to current IP, the scope of
IP addresses returned by the OC-I layer to applications is
local. DNS names, in our design, can specify preferences

and are not resolved using the global DNS infrastructure.
We now discuss the implications that these modifications
have on transparency.

First, the use of local scope addresses implies that ad-
dresses returned to legacy applications may not be valid
at other hosts. Second, applications like ftp that encode
addresses in data packets will potentially not work since
the OC-I layer performs IP header rewriting before de-
livering packets to the application. Our implementation
avoids address rewriting to some extent by negotiating
the local addresses at the OC-I layer, a technique bor-
rowed from [49]. However, for legacy gateways, address
rewriting cannot be avoided. Finally, applications that do
not use DNS requests are not supported. While techni-
cally, such applications can be handled by triggering con-
trol plane operation when the first data packet is sent, this
solution would only work with overlays in which hosts
are assigned IP routable addresses.

Local-scope addresses have been used before in sev-
eral contexts—supporting mobility [40, 42, 49], redi-
rection [15], process migration [39, 40] and availabil-
ity [39]—and their limitations and workarounds are well-
known [49]. In supporting overlays where end-hosts may
not even have routable IP addresses, we are left with little
choice but to work around the limitations of local-scope
addresses.

4 The Overlay Dependent Layer
In this section, we describe the implementation of the
OC-D module for two routing overlays: i3 [38] and
RON [2]. This description serves not only as a valida-
tion of our architecture but also as a blueprint for imple-
menting OC-D modules for other overlays. We begin by
presenting the interface that has to be exported by a OC-
D module to the OC-I sublayer and then discuss the i3
and RON modules.

4.1 OC-D Sublayer API
Table 1 shows the basic API functions that every OC-
D module needs to implement and expose to the OC-I
sublayer. For the simplicity of exposition, we omit the
error related and the overlay name related functions here.

Function calls: OC-I → OC-D
setup(path info, path d) setup path (path d) using

names/preferences in path info
close(tunnel d) close tunnel
send(tunnel d, IP pkt) send IP packet via tunnel

Callbacks: OC-D → OC-I
setup done(path d, callback invoked when tunnel

tunnel d) (tunnel d) was established
recv(path d, IP pkt) receive IP packet from tunnel

Table 1: OC-D sublayer API.

8

The basic API consists of three functions and two call-
backs. The setup function sets up a tunnel between
the local host and a remote host according to the user’s
preferences. The user preferences and the overlay name
of the remote host are contained in the path info field.
In general, this field can contain a path (source route),
where intermediate hops can be middleboxes or gate-
ways bridging two overlay networks. The path d field
represents the path descriptor at the OC-I sublayer. Once
the OC-D sublayer creates the tunnel it returns the tun-
nel descriptor (tunnel d) to the OC-I layer using callback
setup done. The close function call is invoked by the
OC-I sublayer to close the specified tunnel. This function
is usually called when the path’s state at the OC-I sub-
layer expires. We discuss the timeout values for this state
in the context of our implementation in Section 6.1.1.

The send function call, invoked by the OC-I sublayer,
includes a handle to the OC-D’s state for that tunnel and
the packet itself. The recv call, invoked by a OC-D
module to the OC-I sublayer, has the OC-I path handle
for the path and the received packet itself.

4.2 The RON Module
RON aims to improve the resilience of the Internet by
using alternate routes in the overlay [2]. RON offers an
interface similar to IP, and not surprisingly, it requires lit-
tle effort to implement the OC-D module for RON. RON
uses IP addresses and DNS names as overlay IDs and
overlay names, respectively. The name resolution is thus
implemented by simply querying the DNS infrastructure.

When the OC-I sublayer asks the RON module to
setup a connection to a RON host (identified by a name
such as foo.ron), the RON module first decodes the name
to obtain the DNS name of the end-host and the pref-
erences expressed in the name. This DNS name is then
resolved using DNS to obtain an IP address. The RON
module then sets up state associating the preferences and
the destination IP address with the tunnel and passes its
handle to the OC-I sublayer.

Data plane operations involve simple encapsulation
and decapsulation. When sending packets, the RON
module retrieves the tunnel preferences using the han-
dle passed by the OC-I sublayer, encapsulates the packet,
and sends it over RON. On receiving a packet, the RON
module decapsulates the packet and passes it to the OC-I
sublayer.

Our solution offers some advantages over the RON-
specific solution for supporting legacy applications.
First, our solution is more flexible as it allows users
to specify overlay names and preferences using DNS
names. In contrast, in the RON specific solution, the IP
addresses of all RON machines have to be statically con-
figured. Second, our solution allows stitching together
multiple RON overlays.

4.3 The i3 Module
i3 is a new network architecture, implemented as an
overlay. In a nutshell, i3 uses a rendezvous-based com-
munication abstraction to support services like mobility,
multicast, anycast and service composition using middle-
boxes. We now describe how the i3 module works when
host A contacts host B through i3. For a detailed descrip-
tion of i3 the reader is referred to [38].

On receiving the setup request for B.i3 from the OC-
I sublayer, the i3 module at A first resolves the name to
a 256−bit i3 identifier by using implicit mapping: the
identifier of a host is derived by simply hashing its name.
The identifier obtained by hashing B.i3 corresponds to
B’s public trigger identifier idB . Thus, i3 does not re-
quire any resolution infrastructure; only a name alloca-
tion and certification authority is required, and the secu-
rity options provided by the OC-I sublayer can provide
authentication and security on top of the implicit map-
ping.

After the name is resolved, the i3 module at A initiates
private trigger negotiation by contacting host B through
its public trigger [idB |B]. Both hosts exchange a pair
of private triggers [idAB |A] and [idBA|B], respectively,
after when they communicate exclusively through these
triggers: host A sends packets to host B using ID idBA,
and host B sends packets to A using ID idAB . Once the
control protocol sets up the state, the i3 module sends
packets captured from the application by encapsulating
the payload with i3 headers that include private triggers
identifying the flow. Received packets are decapsulated
before delivering to the OC-I module.

The i3 OC-D module also allows receiver-imposed
middleboxes by using i3’s stack of IDs. A i3 host B that
wishes to impose the middlebox on all connecting hosts
inserts a public trigger of the form [idB |(idM , B)]. When
a client A sends a trigger negotiation request via this pub-
lic trigger idB , the i3 overlay delivers it to M along with
the stack (idM , B). The i3 OC-D module thus obtains
the identity of the next hop and proceeds to setup the
tunnel to B through its OC-I sublayer.

5 Applications
In this section, we discuss some interesting application
scenarios in which legacy applications can benefit from
i3 and RON functionality. We have implemented these
applications by leveraging the i3 and RON OC-D mod-
ules.

• Middlebox applications: The OC layer explicitly
supports middleboxes in the path, and as an exam-
ple, we show how a user can redirect legacy traffic
through a intrusion detection system running on a
remote machine.

• Overlay Composition: We used the ability of the
OC-I layer to bridge multiple overlays to improve

9

Server Proxy on machine running FTP server contacted by Client Proxy

1085568092.160498 #1 10.1.244.127/33042 > 10.2.51.9/ftp start
1085568092.292806 #1 response (220 ProFTPD 1.2.7 Server (ProFTPD Default Installation) [Gaia])
1085568092.316731 #1 AUTH GSSAPI (syntax error)
1085568092.356634 #1 AUTH KERBEROS_V4 (syntax error)
1085568117.009735 #1 USER badguy (logged in)
1085568123.326314 #1 TYPE I (ok)
1085568123.370194 #1 PASV (227 10.2.51.9/33044)
1085568123.402519 #1 STOR eggdrop (complete) POSSIBLE ATTACK!
1085568126.272537 #1 QUIT (closed)
1085568126.320406 #1 finish

Figure 9: Analysis performed by Bro

wide-area performance for wireless clients.
• Secure Intranet Access: We also implemented a

more flexible and secure version of Virtual Private
Networks (VPNs) [44] by using the OC-I layer to
contact legacy hosts over a overlay.

• NAT Traversal: Since i3 allows access to hosts be-
hind NATs, our implementation of the OC-I layer
along with the i3 OC-D module allows legacy ap-
plications to traverse NATs.

5.1 Middlebox applications
In conjunction with i3, our design gives complete control
to hosts and applications over the middleboxes on their
path. As an example of how this functionality might be
used, we implemented an intrusion detection middlebox
which can be used as a firewall by any overlay-enabled
host. This setting allows users to redirect all their incom-
ing and outgoing traffic through the firewall independent
of where they are located. For instance, users could use
their company firewall from an Internet cafe.

Implementing such a middlebox took less than 200
lines in our system. We wrote a shim middlebox mod-
ule that uses Bro [30], a popular intrusion detection
program. The OC-I layer is configured to relay pack-
ets through this shim layer, which in turns sends them
to Bro. Note that Bro is itself a legacy application, and
thus these packets should have valid IP headers. For this
reason, the shim layer assigns virtual addresses (which
can be considered as middlebox handles) to both end
points, rewrites the IP header of packets appropriately,
and then sends them to Bro. Thus, to Bro, communica-
tion between the remote hosts looks like a conversation
between two virtual hosts, and it can perform stateful
analysis (e.g., TCP analysis by matching the data packets
of a TCP connection with the corresponding acknowl-
edgments).

Figure 9 shows an example of the analysis performed
by Bro. Bro uses FTP traffic analysis to identify an at-
tempt by badguy to upload a file called eggdrop, a
well-known backdoor. This example also illustrates the
local scope addresses in use (in this case, from the range
1.0.0.0/8).

Although our solution allows commonly-used tech-
niques such as signature-based attack detection, it does

not permit Bro to use certain advanced detection tech-
niques. For example, Bro has the ability to detect
address-scanning by looking for several unsuccessful
connection attempts to multiple hosts in a single net-
work. This analysis uses IP addresses to identify hosts
belong to the same network. However, the addresses seen
by Bro are local-scope virtual addresses and give no in-
formation about the end-host’s networks.

5.2 Overlay Composition

Overlay composition allows an application to explicitly
stitch together different overlays. Apart from allowing
inter-operability, this allows an user to merge the func-
tionalities of multiple overlays in interesting ways. For
example, a user who connects to the Internet through a
wireless hop, may use i3 for uninterrupted communica-
tion while switching between various wireless networks.
In addition, the user may also wish to optimize wide-
area performance using RON. We achieve this by using
i3 to connect to a close-by i3-to-RON gateway, which
will then relay packets over a RON-optimized path.

5.3 Secure Intranet Access

Our implementation can be used without any change to
achieve VPN-like functionality by offering a secure way
of accessing corporate Intranets. The legacy server gate-
way runs inside the organization and hence has unre-
stricted access to all intranet hosts. External end-hosts re-
lay packets through the legacy gateway in order to access
Intranet machines. Authentication and encryption are im-
portant requirements in this scenario, and we can simply
leverage the OC-I layer’s security mechanisms for this
purpose. Any routing overlay, including vanilla IP, can
be used for communicating between the user’s machine
and the legacy gateway. Our solution has two advantages
over VPN-based solutions:

Multiple intranets: In our solution, a client can access
multiple intranets at the same time by specifying prefer-
ences based on DNS names, e.g., connections to *.com-
pany1.com can be relayed to the company1’s gateway,
those to *.company2.com can be relayed to company2’s
gateway. With traditional VPNs, this may be impossible
if both Intranets use the same address range.

Security: In traditional VPNs, an external client that is
connected to an Intranet is assigned an IP address from
the Intranet address space. As a result, a client infected
by a scanning worm can potentially infect Intranet ma-
chines. Our solution makes such infection harder because
an infected client cannot access any Intranet host directly
using its real IP address. Only virtual addresses that have
been allocated by the OC-I layer for ongoing connections
are vulnerable. This is equivalent to having a white-list of
allowed connections, which can be used to detect scans.

10

5.4 NAT Traversal
i3 allows access to machines behind NATs by its abil-
ity to bridge different address spaces. Hence, using the
i3 module in conjunction with the OC-I layer, an user
can run legacy servers behind NATs. This allows home
users to access their machines from anywhere, and they
can do so securely by simply remembering the human-
readable name of their home machine. When persuad-
ing users to deploy our software, we found NAT traver-
sal to be a very attractive feature from the users’ point
of view. Unlike other mechanisms proposed today for
this purpose (e.g., AVES [29], Hopster [16], DOA [46]),
the i3 module allows incoming access without modifying
NATs. It is also cleaner and simpler compared to mech-
anisms based on heuristics to predict NAT behavior such
as NATBlaster [6].

6 Implementation
We have implemented the OC-I layer using C++. We
have also implemented RON and i3 modules for the OC-
D layer, along with all the applications described in Sec-
tion 5 based on these modules. We plan to make our im-
plementation publicly available soon in both source and
binary format.

6.1 OC-I Implementation
We implemented the OC-I layer as a user-level proxy
in order to avoid modifying the operating system stack.
This user-level proxy uses a packet capture device,
specifically tun [12, 45, 47], to interpose itself into the
stack. DNS packets and packets sent to local-scope IP
addresses are redirected to the tun device using ipta-
bles and iproute. The OC-I layer simply reads from the
tun device to captures packets from the application, and
writes packets to it in order to deliver them to the appli-
cation.

We note that the tun device is available on other op-
erating systems, such as Windows, FreeBSD, Solaris,
and we have already ported our OC-I layer to Windows.
However, our approach has the limitations that adminis-
trative privileges are required to use the tun device and
that all users on the same machine need to share the same
configuration; these can be avoided by a dynamic library
based implementation.

6.1.1 Control Plane: State Maintenance
On intercepting a DNS request, the OC-I layer initial-
izes state, such as path descriptors and security options,
and communicates with its peer OC-I layer(s) to set up
the path requested by the application. The setup proto-
col may also involve local-scope address negotiation and
security negotiations. The former requires one roundtrip,
while our security protocol requires two roundtrips due
to exchange of certificates and nonces. The public keys
associated with the certificates are 1024-bit RSA keys

and 256-bit symmetric keys are exchanged during se-
curity negotiations. After negotiations are complete, the
OC-I layer sends the DNS reply to the application. In
order to prevent caching of such replies, our implemen-
tation sets the Time To Live (TTL) option to zero in the
DNS reply sent to applications.

The OC-I layer refreshes the state associated to a DNS
name N every time one of the following two events oc-
cur: a packet is forwarded using the state associated with
N , or a DNS request for N is invoked. If none of these
events happen, the OC-I layer removes the mapping state
after a predefined interval of time TO. We use a timeout
period of TO = 7200s to deal with applications that
cache replies beyond the TTL, e.g., Internet Explorer.
This timeout seems adequate in our deployment expe-
rience. The OC-I layer also periodically checkpoints its
state on disk to enable failure recovery during an appli-
cation session.

6.1.2 Data Plane: Packet Forwarding
Packets sent by the application are addressed to local-
scope addresses returned by the OC-I layer. These ad-
dresses are allocated from the unused address range
1.0.0.0/8 for this purpose. The OC-I layer may also en-
crypt the packet before dispatching to the OC-D layer.
The headers added by the various layers could lead to
packet fragmentation. An application can avoid packet
fragmentation by performing end-to-end MTU discov-
ery. At the receiving end, the OC-I layer rewrites IP ad-
dresses before sending packets to the application and in-
crementally updates the IP and transport layer check-
sums [24]. We have implemented address rewriting for
TCP, UDP and ICMP. Note that this rewriting occurs
only if address negotiation fails.

6.1.3 Gateways
An OC-I layer can be explicitly configured to behave as
a gateway, in which case it is willing to act as a relay
for other hosts. Since we have implemented i3 and RON
modules, the OC-I layer can bridge these two overlays.
We also implemented the LegacyServerIP (LSIP) and the
LegacyClientIP (LCIP) modules (see Section 3.2.2).

The LSIP module is based on a Linux software NAT
implementation for the legacy server gateway, which in-
cludes packet-rewriting support for several applications
such as FTP, H.323, PPTP and SNMP. The legacy
server gateway does not support ICMP since there is no
information in an ICMP packet (such as port numbers) to
permit multiplexing of a single IP address among multi-
ple hosts. The LCIP implementation is very similar to
AVES [29], and thus we do not describe it here.

6.2 OC-D Implementation
An OC-D module is implemented as a C++ class which
provides the required OC-I API. Implementing the i3 and

11

RON modules mainly involved supporting this API us-
ing the i3 and the MIT RON libraries. The RON OC-
D module performs little more than translating between
the OC-I API calls and the RON library calls. The i3
module, apart from this translation, supports a few opti-
mizations to reduce control plane and data plane latency.
We removed the roundtrip requirement for private trig-
ger negotiation by piggybacking data packets on control
plane setup protocol. On the data plane, the i3 OC-D
module can request the i3 overlay to set up a shortcut,
which enables a direct path to the remote end-host. Once
a shortcut is established, the packets are no longer relied
through the i3 infrastructure. Typically, shortcuts reduce
the roundtrip latency and increase the throughput.

7 Evaluation
We first present micro-benchmarking results to evalu-
ate different costs involved in the data and control path
of the proxy. The benchmarking results indicate that
the overhead of using the proxy is minimal. We then
present wide-area experiments in some simple scenar-
ios. Of course, the purpose of these experiments is only
to show that the cost of performing packet capture and
tunneling is not large, and that wide-area performance is
still acceptable. The real benefit of our architecture and
implementation should be gauged by the applications it
enables, and eventually, the user acceptance it gains.

7.1 Micro-benchmarks
All our micro-benchmarks were conducted on a 2.4 GHz
Pentium IV machine with 512 MB RAM running Linux
2.4.20. Timing was done using gettimeofday at the
user level. We report the timing numbers as a median
of 100 runs. We used a simple in-house tool that sends
data of various sizes and rates as the legacy client for
the proxy. For conducting micro-benchmarks, we in-
strumented the proxy and the tool reporting the time
at relevant checkpoints. We do not report on the mi-
crobenchmarking experiments from our Windows port of
the proxy since cygwin does not have fine-grained timer
implementation. Moreover, the cygwin Linux emulation
layer also introduces additional overhead that is not fun-
damental to our proxy implementation.

Data Path Overhead. In comparison to a legacy ap-
plication running over the host IP stack, the use of the
proxy adds two memory copies of the data: from kernel
to the user space and back, for both sending and receiving
packets. Table 2 reports results for the send and receive
times of a single packet of size 1200 bytes4 for i3 and
RON with and without encryption. We split up the total
send and receive times into three phases: (a) time taken
to move a packet between application and proxy (using

4We used this packet size in order to avoid fragmentation
due to addition of headers.

tun), (b) overhead at the OC-I layer, and (c) overhead at
the OC-D layer.

Send i3 RON
(µs) No-Encr Encr No-Encr Encr
OC-I 19 93 18 91

OC-D 20 20 28 28

tun 24 25 24 24

Recv i3 RON
(µs) No-Encr Encr No-Encr Encr
OC-I 8 84 6 82

OC-D 44 43 36 35

tun 16 20 15 16

Table 2: Split-up of per-packet overhead of send (above) and
recv (below) with the proxy. All numbers are in microseconds.

As expected, the processing time of the OC-I layer is
independent of whether we use i3 or RON, and without
security, the percentage of time spent at OC-I layer is not
large (25% for send and 11% for receive) and rest of the
overhead is for transferring the packet from the applica-
tion to the proxy and OC-D processing. The processing
time at the OC-D module for both i3 and RON are in the
same ballpark, and as expected, almost independent of
whether security is used or not. A dynamic library im-
plementation can reduce the overhead of transferring the
packet from the application to the proxy as mentioned
before. The total processing time indicates that the raw
throughput that can be sustained is about 15000 and 7000
packets per second (for 1200-byte packets) without and
with encryption respectively.

Lookup Overhead. We now quantify the overhead in-
curred by the proxy in the control path (i.e., name reso-
lution). We distinguish between two cases when an ap-
plication makes a DNS request: either the DNS name
has already been resolved, or it is being resolved for the
first time. In the first case, the proxy immediately returns
the name with a minimal processing overhead of 15 mi-
croseconds. In the second case, the proxy performs addi-
tional operations to setup the state and hence takes longer
(169 microseconds).

7.2 LAN Experiments
In order to study the effect of the proxy overhead on
end-to-end behavior, we measured the latency and TCP
throughput between two proxies communicating over a
LAN in Table 3. In a LAN environment, the overhead
of the proxy can be localized without wide-area artifacts
affecting the measurements. We run the experiments be-
tween two clients communicating with each other across
i3, RON and IP. In addition, we also run the experiments
for i3 with shortcut enabled. Shortcut is an optimiza-
tion that i3 developers have added to eliminate the in-

12

efficiency of relaying packets through i3 servers in the
data path.

Latency (ms) i3 i3-shortcut RON IP
No-Encr 1.42 0.788 0.762 0.488

Encr 1.74 1.13 1.06 NA

Throughput (kbps) i3 i3-shortcut RON IP
No-Encr 9589 10504 10022 11749

Encr 5415 5615 5445 NA

Table 3: LAN experiments for latency and throughput.

The latency results are consistent with the earlier
micro-benchmarking results. Latencies in the case of i3-
shortcut and RON are similar, and are about a couple of
hundred microseconds larger than IP latency. However,
since the LAN latencies are themselves very small, even
a single waypoint causes significant relative increase in
latency.

The throughput results also indicate that the perfor-
mance hit using the overlays (i3-shortcuts and RON) is
only about 10%. The throughput and latency of RON
is not better than IP since the setup of the experiment
was meant to study overhead of the implementation
and hence there weren’t many diverse paths with bet-
ter throughput than IP. Since the i3 servers were also
located on the same LAN, sending the packets through
an i3 server also did not cause a significant throughput
degradation.

7.3 Wide-area Experiments
For completeness, we performed wide-area experiments
with the proxy running on three machines at different lo-
cations A, B, and C. The fact that the OCALA proxy
requires administrator privileges made it difficult for us
to procure more machines. We measured the latency and
throughput of the wide-area paths between these three
machines. The latency is measured using ping, and the
throughput using ttcp, a popular tool for measuring
TCP throughput.

Figure 10 shows the latency and throughput results us-
ing the proxy over wide-area for the following configura-
tions of the overlay: (a) i3, (b) i3-shortcuts, where hosts
circumvent i3 for data packets, (c) RON (d) direct IP. The
RON and i3 overlays were run on PlanetLab. In all the
experiments, the OC-D i3 module on the end-host was
configured to use the closest i3 server, while for RON,
the end-host itself acts as a RON node.

Each latency value shown in Figure 10(a) represents
the median of 100 measurements. As expected, the la-
tencies in the case of i3-shortcuts and IP are virtually
identical, as in both cases the packets follow the direct IP
path between the end-points. In contrast, the latency in

0

20

40

60

80

100

120

140

A --> B B --> A A --> C C --> A B --> C C --> B

L
at

en
cy

 (
m

s)

i3 i3-shortcut RON IP

0

5000

10000

15000

20000

25000

30000

35000

A --> B B --> A A --> C C --> A B --> C C --> B

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

i3 i3-shortcut RON IP

Figure 10: Wide-area experiments: (a) latency (b) throughput.

the case of i3 is much larger as in this case the packets are
forwarded via an intermediate i3 hop. Finally, although
we configured RON to choose latency-optimized paths,
we observed no significant improvements in latency as
compared to the direct IP path.

Figure 10(b) shows the throughput for the same sce-
narios; each value represents the median over 10 mea-
surements. Again, i3 performs consistently worse than
the direct IP path. In particular, in scenarios A→C and
C→A, the i3 throughput is over one order of magnitude
lower than the direct IP path. We speculate that these
large differences are because of the throughput limita-
tions of the PlanetLab nodes at the time of our measure-
ments. Such effects are also reflected (although in a much
smaller degree) in the RON results despite configuring
RON to use bandwidth-optimzed paths. Finally, in two
cases where the destination was host A, the IP through-
put was lower than that of RON and i3-shortcuts. We
attribute this unexpected phenomenon to be due to rate-
limiting of incoming TCP connections at A. (Recall that
the proxy tunnels TCP connections over UDP.)

8 Related Work
The problem of supporting legacy applications over non-
IP or IP-modified communication infrastructures has
been addressed in a variety of contexts. Examples in-
clude overlay networks and new network architectures
(e.g., RON [2], ROAM [50], HIP [26], DOA [46],
WRAP [5]), end-host support for mobility [40, 42, 49]),

13

and mechanisms to allow end-hosts to use overlays with-
out participating in them [28]. However, all these propos-
als are domain-specific, and as a result they do not sup-
port inter-operability across different overlays. In con-
trast, our architecture not only allows a user to access
different overlays simultaneously, but also allows hosts
in different overlays to communicate with each other.

Architecturally, many of the previous solutions (e.g.,
HIP [26], WRAP [5]) interpose a shim layer, similar
to the OC layer, between the transport and the network
layer. Our architecture is different from these proposals
in that it explicitly splits this layer into an overlay inde-
pendent sublayer that acts as traditional network layer,
and an overlay dependent that acts as a traditional link
layer. This division is the key which allows us to provide
inter-operability across multiple different overlays.

Our goal of stitching together multiple overlays resem-
bles the goal of AVES [29] and TRIAD5 [8] to stitch to-
gether multiple IP networks, such as NATed realms. An-
other proposal, UIP [11] goes one step farther by provid-
ing uniform connectivity not only across IP networks, but
also across non-IP networks, such as ad-hoc networks.
All these proposals focus on providing universal connec-
tivity. In contrast, we focus equally on exposing the over-
lay functionality to users, functionality that often goes
beyond connectivity. Our work can be viewed as a gener-
alization of AVES and TRIAD, as in our architecture an
IP network is a particular instance of an overlay. Com-
pared with UIP, we use names to uniquely identify over-
lay hosts instead of globally unique identifiers.

In realizing our architecture, we rely on techniques
and protocols previously proposed in a variety of con-
texts. The technique of intercepting DNS requests for
the purpose of interposing a proxy has been used in
AVES [29], Coral [13], and for improving web browsing
performance over wireless networks [33]. Local-scope
addresses has been proposed in the context of support-
ing mobility [26,40,42,49], redirection [15], process mi-
gration [39,40] and server availability [39]. Our address-
negotiation protocol is similar to that in Yalagandula et.
al. [49], while the key-exchange protocol is a simple gen-
eralization of the SSL protocol [14].

9 Discussion
In this section, we summarize our experiences with the
proxy deployment. We (and other groups) have used var-
ious versions of the proxy since March 2004. Over this
time interval, the proxy has attracted interest from both
overlay developers and end-users. Developers of various
routing overlays and network architectures, such as De-
lay Tolerant Networks [10], Host Identity Protocol [26],
OverQoS [41], Tetherless Computing [37], QoS Middle-

5The main goal of TRIAD is to provide content routing, but
this is out of the scope of this discussion.

ware project [27], have expressed interest in leveraging
the proxy for their own overlays. One group has been al-
ready successful in reusing the proxy to provide support
for legacy applications over HIP, without changing the
operating system.

The proxy has been used for supporting a variety of
applications including ssh, ftp, web browsing, and virtual
network computing (VNC) applications. Most end-users
have typically used the proxy for accessing their home
machines to get around NAT boxes and dynamic IP ad-
dress allocation by their ISPs.

Based on our own experience and based on the feed-
back from other end-users and developers, we have
learned a few lessons, some of which are obvious in ret-
rospect. These lessons emphasize what is arguable the
main benefit of the proxy: the ability to “open” the over-
lays to real users and real applications. The feedback re-
ceived from these users has been invaluable in improving
the proxy design, and in some cases, the overlay design.

Efficiency matters. When using legacy applications,
the users expect this applications to perform the same
“way” no matter whether they run directly on top of IP or
on top of an overlay. In particular, more often than not,
we found the users unwilling to trade the performance
for more functionality. This feedback lead not only to
proxy optimizations, but also to overlay optimizations.
For example, the developers of i3 have added shortcuts
to improve the end-to-end latency, and added the ability
to share a private trigger among multiple tunnels to de-
crease the setup cost.

Security matters. Security was not part of our origi-
nal design agenda. However, we found that the users ex-
pected at least the same level of security from the OC-
D name resolution mechanism as they get from today’s
DNS (where impersonation while possible, is not trivial).
In the area of mobility, the users and developers argued
for even much stronger security guarantees such as au-
thentication and encryption. In the end, this feedback led
us to make the security a first order goal of our design.

Usage is unexpected. Initially, we expected mobility
to be the most popular application. However, this was
not the case. Instead the users were more interested in
using the proxy for such “mundane” tasks as access-
ing home machines behind NATs or firewalls, and get-
ting around various connectivity constraints. In one in-
stance, users leveraged the fact that the proxy commu-
nicates with i3 via UDP to browse the web through an
access point that was configured to block TCP web traf-
fic! The unexpected usage lead us to provide better sup-
port for applications over NATs. In particular, we have
implemented an OC handle negotiation mechanism that
preserves the addresses in the IP headers. This allows us
to support some applications that otherwise do not work
over NATs (e.g., ftp).

14

10 Conclusion
Overlay networks have been the focus of much research
in recent years due to their promise of introducing new
functionality without changing the Internet infrastruc-
ture. Surprisingly little attention has been devoted to
achieving the same desirable property at the end-host:
provide new functionality without any changes to legacy
software such as operating systems, network applications
and middlebox applications.

Our work is a preliminary step in this direction and
aims to improve the inter-operability between legacy ap-
plications and routing overlays, and between different
routing overlays. It is our hope that this can help accel-
erate the deployment and adoption of overlay networks
that aim to serve the typical Internet user.

Currently, we (and others) are in the process of extend-
ing the proxy implementation to support other overlay
networks. Ultimately, we plan to enlarge our user base
and gather more feedback to improve the proxy. As our
experience showed, users often find unexpected uses to
the system, which can push the design in new directions.

References
[1] Akamai Technologies. http://www.akamai.com.
[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-

ris. Resilient Overlay Networks. In Proc. of SOSP, 2001.
[3] D. G. Andersen. Mayday: Distributed Filtering for Inter-

net Services. In USITS, Seattle, WA, 2003.
[4] J. Angel. Realmedia complete. http://www.angel.

org/Book/chapter2_pdf.
[5] K. Argyraki and D. Cheriton. Loose Source Routing as a

Mechanism for Traffic Policies. In Proc. of FDNA, 2004.
[6] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig. NAT-

Blaster: Establishing TCP Connections Between Hosts
Behind NATs, Aug 2004. In Submission.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SCRIBE: a large-scale and
decentralised application-level multicast infrastructure.
In NGC’2001, London, UK, November 2001.

[8] D. R. Cheriton and M. Gritter. TRIAD: A New
Next Generation Internet Architecture, Mar. 2001.
http://www-dsg.stanford.edu/triad/
triad.ps.gz.

[9] H. Eriksson. MBONE: The Multicast Backbone. Com-
munications of the ACM, 37(8):54–60, 1994.

[10] K. Fall. A delay tolerant network architecture for chal-
lenged internets. In Proc. SIGCOMM, 2003.

[11] B. Ford. Unmanaged Internet Protocol: Taming the edge
network management crisis. SIGCOMM Comput. Com-
mun. Rev., 34(1):93–98, 2004.

[12] FreeBSD. www.freebsd.org.
[13] M. Freedman, E. Freudenthal, and D. Mazieres. Democ-

ratizing content publication with coral. In Proc. of NSDI,
2004.

[14] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL
Protocol Version 3.0. Internet Draft, November 1996.
http://wp.netscape.com/eng/ssl3/.

[15] S. Gupta and A. L. M. Reddy. A Client Oriented, IP
Level Redirection Mechansism. In Proc. IEEE INFO-
COM, 1999.

[16] Hopster: Bypass firewall, Bypass proxy software. www.
hopster.com.

[17] Y. hua Chu, S. G. Rao, and H. Zhang. A case for end
system multicast. In Proc. of ACM SIGMETRICS, 2000.

[18] Internet protocol v4 adress space. http:
//www.iana.org/assignments/
ipv4-address-space.

[19] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole. Overcast: Reliable multicasting with
an overlay network. In Proc. of OSDI, Oct 2000.

[20] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring
Adoption of DHTs with OpenHash, a Public DHT Ser-
vice. In Proc. of IPTPS, 2004.

[21] KaZaa. http://www.kazaa.com/.
[22] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure

Overlay Services. In Proc. of ACM SIGCOMM, Aug.
2002.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proc. of ASPLOS,
2000.

[24] T. Mallory and A. Kullberg. Incremental Updating of the
Internet Checksum. RFC 1141, January 1990.

[25] S. McCanne and V. Jacobson. vic: A Flexible Framework
Framework for Packet Video. In ACM Multimedia, 1995.

[26] R. Moskowitz, P. Nikander, P. Jokela, and T. Hen-
derson. Host Identity Protocol, 2003. http:
//www.hip4inter.net/documentation/
drafts/draft-moskowitz-hip-08.ht%ml.

[27] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. QoS-
Aware Middleware for Ubiquitous and Heterogeneous
Environments. IEEE Communications Magazine, 2001.

[28] A. Nakao, L. Peterson, and M. Wawrzoniak. A Divert
Mechanism for Service Overlays. Technical Report TR-
668-03, Computer Science Department, Princeton, Feb
2003.

[29] T. S. E. Ng, I. Stoica, and H. Zhang. A Waypoint Ser-
vice Approach to Connect Heterogeneous Internet Ad-
dress Spaces. In Proc. of USENIX Technical Conference,
2001.

[30] V. Paxson. Bro: A system for detecting network intruders
in real-time. Computer Networks, 31(23–24):2435–2463,
1999.

[31] L. Peterson, S. Shenker, and J. Turner. Overcoming the
internet impasse through virtualization. In Proc. of the
Third Workshop on Hot Topics in Networking (HotNets-
III), San Diego, CA, November 2004.

[32] Planet Lab. http://www.planet-lab.org.
[33] P. Rodriguez, S. Mukherjee, and S. Rangarajan. Ses-

sion level techniques for improving web browsing per-
formance on wireless links. In Proc. of the 13th inter-
national conference on World Wide Web, pages 121–130,
2004.

[34] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol
Label Switching Architecture. RFC 3031, Jan. 2001.

15

[35] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. Splitstream: High-bandwidth multicast in a co-
operative environmen. In SOSP’03, Lake Bolton, NY,
October 2003.

[36] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vah-
dat, G. Voelker, and J. Zahorjan. Detour: A Case for In-
formed Internet Routing and Transport. Technical Report
TR-98-10-05, 1998.

[37] A. Seth, P. Darragh, and S. Keshav. A Generalized Archi-
tecture for Tetherless Computing in Disconnected Net-
works. http://mindstream.watsmore.net/.

[38] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In SIG-
COMM, 2002.

[39] G. Su. MOVE: Mobility with Persistent Network Connec-
tions. PhD thesis, Columbia University, Oct 2004.

[40] G. Su and J. Nieh. Mobile Communication with Virtual
Network Address Translation. Technical Report CUCS-
003-02, Columbia University, Feb 2002.

[41] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: An Overlay Based Architecture for Enhancing
Internet QoS. In Proc. of NSDI, 2004.

[42] F. Teraoka, Y. Yokote, and M. Tokoro. A Network Archi-
tecture Providing Host Migration Transparency. In Proc.
ACM SIGCOMM, 1991.

[43] vat - LBNL Audio Conferencing Tool. http://
www-nrg.ee.lbl.gov/vat.

[44] Virtual private network consortium. http://www.
vpnc.org/.

[45] Virtual tunnel. http://vtun.sourceforge.
net/.

[46] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes No Longer Con-
sidered Harmful. In Proc. of OSDI, 2004.

[47] K. Wehrle, F. Pahlke, D. Muller, et al. Linux Networking
Architecture: Design and Implementation of Networking
Protcols in the Linux Kernel, 2004. Prentice-Hall.

[48] B. Wilcox-O’Hearn. Names: Decentralized, Secure,
Human-Meaningful: Choose Two. http://zooko.
com/distnames.html.

[49] P. Yalagandula, A. Garg, M. Dahlin, L. Alvisi, and
H. Vin. Transparent Mobility with Minimal Infrastruc-
ture. Technical Report TR-01-30, UT Austin, June 2001.

[50] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker.
Host Mobility Using an Internet Indirection Infrastruc-
ture. In Proc. of MOBISYS, 2003.

16

