
Supporting Legacy Applications over i3

Jayanthkumar Kannan Ayumu Kubota Karthik Lakshminarayanan
Univ. of California, Berkeley KDDI Labs Univ. of California, Berkeley

Ion Stoica Klaus Wehrle
Univ. of California, Berkeley Univ. of Tübingen

Report No. UCB/CSD-04-1342

June 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Supporting Legacy Applications over i3

Jayanthkumar Kannan Ayumu Kubota Karthik Lakshminarayanan
Univ. of California, Berkeley KDDI Labs Univ. of California, Berkeley

Ion Stoica Klaus Wehrle
Univ. of California, Berkeley Univ. of Tübingen

June 2004

Abstract

Providing support for legacy applications is a crucial com-
ponent of many overlay networks, as it allows end-users to
instantly benefit from the functionality introduced by these
overlays. This paper presents the design and implementation
of a proxy-based solution to support legacy applications in
the context of the i3 overlay [24]. The proxy design relies on
an address virtualization technique which allows the proxy
to tunnel the legacy traffic over the overlay transparently. Our
solution can preserve IP packet headers on an end-to-end ba-
sis, even when end-host IP addresses change, or when end-
hosts live in different address spaces (e.g., behind NATs).
In addition, our solution allows the use of human-readable
names to refer to hosts or services, and requires no changes
to applications or operating systems.

To illustrate how the proxy enables legacy applications to
take advantage of the overlay (i.e., i3) functionality, we
present four examples: enabling access to machines behind
NAT boxes, secure Intranet access, routing legacy traffic
through Bro, an intrusion detection system, and anonymous
web download. We have implemented the proxy on Linux
and Windows XP/2000 platforms, and used it over the i3 ser-
vice on PlanetLab over a three month period with a variety of
legacy applications ranging from web browsers to operating
system-specific file sharing.

1 Introduction

In recent years, many researchers have focused on using
overlay networks as a way of introducing new functional-
ity in the Internet. However, the key issue which will ul-
timately determine the success of these proposals is the
ease with which typical users can take advantage of the
new functionality. Some common approaches of addressing
this issue are porting popular applications or building new
ones on top of these overlays. Examples in this category
include vic/vat [5, 14] for the MBONE [8], and more re-
cently peer-to-peer file sharing applications (such as KaZaa,
Gnutella and Overnet). An alternative approach is providing
support for existing legacy applications to use the overlay.
This approach would allow typical users to instantly reap

the benefits of many overlay proposals that provide mobil-
ity [29], composable services [9], quality of service and re-
silience [6, 22, 26].

Despite the obvious importance of supporting legacy appli-
cations, there has been relatively little effort on developing
comprehensive solutions. The solutions proposed so far have
various limitations such as assuming that overlay nodes are
still identified by IP addresses (RON [6] and ROAM [29]),
requiring changes to DNS servers or NAT boxes (AVES
[16]), or requiring modifications to the name lookup mecha-
nism at the end-host (TRIAD [7] and HIP [15]).

In this paper, we address the limitations of these proposals
by designing a proxy-based solution to support legacy appli-
cations in the context of the Internet Indirection Infrastruc-
ture (i3) [24]. To the best of our knowledge, this is the first
solution that provides the following desirable properties si-
multaneously:

• Require no change to the applications, operating sys-
tems, DNS servers, or NAT boxes.

• Allow preservation of original IP headers, while pro-
viding support for mobility and transparent access to
hosts behind NATs and firewalls. Preserving IP head-
ers not only allows the use of many legacy applications
(such as ftp, H.323), but also allows the deployment
of network-layer middle-boxes that use IP headers.

• Allow users to identify overlay entities such as end-
hosts or services using human-readable names.

This paper describes the design and implementation of the
proxy and our experience with deploying applications and
middleboxes with the proxy. While our solution is imple-
mented in the context of i3, we present much of the design
independent of i3 and discuss how it can be easily extended
to work with other overlay networks.

The central component of the proxy is a simple address virtu-
alization technique, which allows the traffic between legacy
applications to be tunneled over the overlay. In a nutshell,
the proxy traps the DNS requests of the legacy applications,
resolves them to virtual IP addresses that have local scope.
Then, the proxy intercepts the packets sent by the legacy ap-

1

plications to these virtual addresses and tunnels them over
the overlay.

For realizing all the aforementioned properties, the proxy
needs to be colocated (i.e., running on the same host) with
the application that wishes to use the overlay. We also present
alternate remote deployment alternatives for the proxy at the
expense of some of the properties. For instance, if the proxy
is not colocated with the application that initiates the connec-
tion, then we need to modify a DNS server, and if the proxy
is not colocated with either the initiator or the receiver, then
IP headers would be re-written.

We have fully implemented our proxy on both Linux and
Windows XP/2000 platforms and deployed it over an i3 net-
work running on PlanetLab [19]. To illustrate how the proxy
allows legacy applications to take advantage of i3’s function-
ality, we present four examples: enabling access to machines
behind NATs, secure Intranet access, routing legacy traffic
through Bro [18], a middle box that performs intrusion de-
tection, and anonymous web download.

Our experience with these applications led us to revisit some
aspects of the i3 design. We have modified the control path
operation in i3 to allow transparent access of machines and
services behind NATs. We have introduced a shortcut option
that hosts can use to improve the wide-area performance on
the data path.

The rest of the paper is organized as follows. In the next sec-
tion, we give a brief overview of i3. In Section 3, we present
the address virtualization technique, the core component of
the proxy design, largely agnostic of the details of i3. We
present how we realize this proxy design over i3 in Section 4.
In Section 5, we describe the two modifications that we made
to i3 for supporting NATs and improving the wide-area per-
formance. We elaborate on various application scenarios the
proxy can be used for in Section 6. After a description of the
implementation in Section 7, we present the evaluation of the
proxy in Section 8. We survey related work in Section 9 and
conclude after summarizing the lessons from our experience
with the proxy and using legacy applications with it.

2 Overview of i3

In this section, we provide a brief overview of i3. At its
roots, i3 [24] provides indirection, that is, it decouples the
act of sending a packet from the act of receiving it. There are
two basic operations in i3: sources send packets to a logical
identifier (ID) and receivers express interest in packets by in-
serting a trigger into the network (Figure 1(a)). Triggers can
be thought of as routing entries that point to receivers or to
other triggers. Packets are of the form (id , data) and trig-
gers are of the form (id , addr), where addr is either an ID
or an IP address. Given a packet (id , data), i3 finds the trig-
ger (id , addr) and then forwards data to addr . Receivers
refresh the triggers that they insert as long as they desire to
receive packets sent to the ID that the trigger corresponds

Sender
(S)

Receiver
(R)id R

send(id,data) send(R, data)

S

R1

send(id,data)

R2

R4

R3

S

R1send(p|a,data)

R2

R3

send(R1,data)
(a) (b)

(c) (d)

S
R

idT T id R

Transcoder (T)

send(R, data)send((id
T ,id), data)

id’ R1

id’ R2
id id’

id R3

id R4

R1

R2
R3

p|s1

p|s2

p|s3

Figure 1: Basic communication primitives in i3: (a) unicast, (b)
multicast, (c) anycast, and (d) service composition.

to (soft-state approach). In the implementation, a trigger ex-
pires at an i3 node if it is not refreshed for 30 seconds. In
addition, i3 supports an operation to remove triggers.

Identifiers in i3 are 256 bits long. IDs in packets are matched
with those in triggers using longest prefix matching. To re-
duce the probability of accidental collision, two IDs match
only if they share a prefix with a length of at least 128 bits.
i3 is implemented as an overlay network of nodes that store
triggers and forward packets. Identifiers are mapped to i3
nodes using a distributed lookup service such as Chord [25].
A trigger is stored at the node that is responsible for its iden-
tifier in accordance with the Chord lookup protocol. Simi-
larly, packets are routed to the appropriate node by Chord.
The mapping procedure ensures that all IDs which share the
same 128-bit prefix are mapped on the same node; thus, the
longest prefix matching operation is performed locally.

2.1 Communication Abstractions

i3 provides support for a variety of communication abstrac-
tions including mobility, multicast, anycast and service com-
position.

Mobility. A mobile host that changes its address from R to
R′ can preserve the end-to-end connectivity by updating its
trigger from (id , R) to (id , R′).

Multicast. Creating a multicast group is equivalent to having
all members of the group register triggers with the same ID.
There is no difference between unicast and multicast in i3,
and an application can switch between the two on the fly.
Figure 1(b) shows a two-level multicast hierarchy.

Anycast. All hosts in an anycast group maintain triggers that
have identical 128-bit prefixes (Figure 1(c)), but different
128-bit suffixes. Packets are delivered to the group member
that has the trigger with the longest matching identifier. This
scheme can be used for implementing applications such as
server selection.

Service composition. i3 allows either the sender or the re-
ceiver to forward packets through intermediate points in the
network. One way to achieve this is to replace the packet ID

2

with a stack of IDs. Forwarding such a packet is similar to
source routing in IP. Figure 1(d) shows how a sender S can
use a stack of IDs, [idT , id], to forward the packet through
a transcoder T . A receiver can control packet forwarding by
replacing the second field of its trigger with a stack that de-
scribes the forwarding path.

2.2 Additional Operations

Operation of end-hosts. End-hosts (servers) that expect
connections from arbitrary end-hosts (clients) maintain trig-
gers whose IDs are well-known. These triggers are called
public triggers. Once a client contacts a server through its
public trigger, they can exchange a pair of IDs which they
use for the remainder of the communication. Triggers corre-
sponding to these IDs are referred to as private triggers.1 The
use of public triggers as initial rendezvous points gives end-
hosts complete freedom in picking the IDs of their private
triggers. Finally, end-hosts keep their private IDs secret.

Caching To improve performance, i3 performs aggressive
caching. In Figure 1(b), when the i3 node storing triggers
(id, ∗), call it M , first sends a packet with ID id′, the packet
is forwarded by Chord to the node storing triggers (id′, ∗),
call it P . To improve the performance, M caches the address
of P , and sends all subsequent packets directly via IP. The
cache is periodically refreshed (soft-state), with a period of
30 seconds in the i3 implementation.

3 Address Virtualization

In this section, we present a simple technique, called ad-
dress virtualization, that the proxy uses to transparently tun-
nel the traffic of legacy applications over an overlay network.
The essence of this technique is to use an address with local
significance, called virtual address, to impersonate a remote
host. The virtual address can abstract away many of the de-
tails concerning the remote host such as its location, iden-
tity, or address, and thus allows one to interpose virtually any
functionality between two end-hosts. Address virtualization
is similar in spirit to other previous proposals that aim to pro-
vide support for legacy applications [7, 15, 16], but is differ-
ent from these proposals in design details and the properties
it achieves. We discuss these differences in Section 9.

Address virtualization provides support for unmodified
legacy applications that use human-friendly, DNS-like
names. Moreover, the technique can preserve the IP head-
ers of the packets, which allows the proxy to support even
NAT-unfriendly applications such ftp. In an attempt to de-
couple the proxy basics from the implementation over i3, we
present this section agnostic of the details of i3.

1End-hosts that do not need to be contacted by arbitrary end-
hosts don’t need to maintain public triggers.

Overlay
NA NB

Native app Native app

idB

LA Proxy
IPX

IPX�idB

idB

Legacy app

Overlay
NB

Native app

LA

ProxyDNS reply: IPX

nameB�IPX

IPX�idB

idB � IPX

Overlay
NB

Native app

DNS query: nameB

(a)

(b) RON-like solution

(c) Address virtualization

Host A (idA) Host B (idB)

idB

IPX

Figure 2: (a) Two native applications communicating over an over-
lay network. (b) A RON-like Solution (c) Address-virtualization
based solution

3.1 Emulating a Native Client

The basic idea behind interfacing a legacy application to an
overlay is to emulate a native client. Consider a general over-
lay network where end-points are identified by unique over-
lay identifiers. An overlay ID can be an IP address [6], a
DNS-like name, a source route [7, 21], an i3 ID [24], or any
unique string of bits. While in general, an overlay ID can
be associated with a service or a connection, for simplicity,
in this section, we assume that IDs are associated only to
hosts. In the remainder of this section, we use this overlay
network model to motivate and present the address virtual-
ization technique.

Figure 2(a) shows a native application2 NA running on host
A that sends packets to another native application NB on
host B. The packets sent by NA are destined to idB , the
identifier of the end-host running application NB . Let us re-
place native application NA with a legacy application LA.
Since LA is oblivious to the existence of the overlay net-
work, it knows nothing about the overlay ID of NB . A tradi-
tional technique to address this problem is to use a proxy to
intercept the IP packets sent by legacy applications, and for-
ward them to idB (see Figure 2(b)). An example of overlay
network that employs this technique is RON [6].

However, in a general overlay network that supports mobility
or enables the access of hosts behind NATs, the legacy ap-
plications cannot use the IP address of the remote host. Our
solution to this problem is to use a virtual address to iden-
tify the other end host. A virtual address has local scope only
and it is used by the proxy to intercept the legacy application
packets and forward them to the corresponding overlay ID.

The final piece of our solution is to leverage the DNS lookup
mechanism to hand over virtual addresses to applications. In
particular, the proxy intercepts the DNS request of an appli-
cation (locally) and resolves it to a virtual address and an

2A native application directly talks to the overlay network. For
e.g., it sends and receives packets using the overlay packet format.

3

overlay ID. Figure 2(c) illustrates this process. Let nameB

be the name of the end-host running NB . The proxy inter-
cepts the DNS request of LA for nameB and resolves it to a
virtual address IPX which has local scope only.

Note that IPX need not have any relationship with the ad-
dress of B, and thus need not change when the address of
B changes. This allows A and B to live in different ad-
dress spaces (e.g., A can be on an IPv4 network, while B
can be on an IPv6 network) or/and be mobile. For now, as-
sume that the proxy knows idB , the overlay identifier of the
machine named nameB . The proxy then stores the map-
ping IPX→idB , and returns IPX as the DNS reply to LA.
The legacy application sends the subsequent packets to ad-
dress IPX , which are encapsulated and sent over the over-
lay. Packets in the other direction are sent to idA and are
received by the proxy over the overlay. The proxy decapsu-
lates these packets, rewrites the source address to IPX and
delivers them to the application. Thus, to the legacy appli-
cation, the proxy emulates a remote host with address IPX .
We refer to this technique as address virtualization.

Intuitively, we can imagine that the proxy captures pack-
ets that the legacy applications send/receive by faking a
virtual interface. Addresses for both the virtual interface
and for emulating the remote host can be allocated from
a pool of reserved IP addresses (such as 10.0.0.0/8). At
the sender, whenever a new DNS request is intercepted, the
proxy chooses a free address randomly from this pool.

Using DNS-like names to intercept legacy traffic has two
main advantages: convenience and flexibility. Firstly, users
of the application can use human-friendly DNS-like names
as they are used to. Secondly, this approach allows users to
independently define a new namespace specific to an overlay.
Application preferences can be encoded in the name used,
thus allowing users to decide a policy at “run-time”. This
would be useful if the proxy is used with multiple overlays
simultaneously; the packets can be routed over a particular
overlay based on the name suffix.

In the next few sections, we address the following questions:
(a) how is an overlay DNS name resolved to an overlay iden-
tifier? and (b) how can we preserve the original IP headers
without re-writing addresses?

3.2 Resolving Names

We now describes how the proxy resolves a name to an over-
lay identifier. These names need not belong to a registered
DNS namespace, since resolution of these names is usually
done by a proxy and not a legacy DNS server. For clarity,
we refer to names that are not resolved using DNS as over-
lay DNS names. In our implementation, we use names with
a suffix .i3 to refer to i3 DNS names. We consider three
design alternatives for resolving an overlay DNS name to an
overlay ID.

LA

Proxy

IPPA

IPA

IPVB IPPA data

IPVB IPPA dataidBIPF IPA

IPPB IPVA data

IPVB ���� idB

idA ���� IPVB

IPF

LB

Proxy

IPPB

IPB

IPVA ���� idA

idB ���� IPVA

IPL

IPVB IPPA dataidBIPB IPL

Host A Host B

dst src ID dst src

encapsulation
IP header

original
IP header

dst dst srcsrc

Figure 3: The headers of a packet forwarded from LA to LB .
Packet headers contain destination address followed by source ad-
dress.

• Global Resolution. Use a modified DNS or a DHT such
as OpenHash [11] to store the mapping between overlay
DNS names and overlay IDs.

• Local Resolution, Global Scope. Use an implicit
method such as applying a well-known hash function
on the name to obtain the ID.

• Local Resolution, Local Scope. Use a local address
book to explicitly store the name-to-ID mappings.

Global resolution provides a convenient way for users to
manage names. However, this level of names would be a
space of conflict much like DNS names are (as argued by
SFR [27]). In addition, a global resolution scheme usually
requires a central authority and a separate infrastructure to
store the mapping.

Local resolution of names with global scope also has the
convenience of global resolution without requiring an infras-
tructure. However, it also has the problem of name conflicts,
apart from being susceptible to impersonation and other se-
curity attacks described in [3].

On the other hand, explicit storage of name-to-ID mappings
in a local address book provides better security. An address
book is similar to a phone book where person names are re-
placed by overlay names and phone numbers by overlay IDs.
Also, like the names in a phone book, the names in the ad-
dress book have only local scope. The downside of using ad-
dress books is that they are not easy to maintain and operate
with.

In fact, the tradeoffs between decentralized operation, secu-
rity, and human-friendliness in the name-to-ID mapping that
we see here have been articulated before in [3]. In our imple-
mentation, we use the local resolution mechanism using an
address book, as we place greater emphasis on security.

3.3 Preserving IP Headers

In our solution, the proxy emulates a remote host to the lo-
cal legacy application by returning a virtual address. With a
random choice of virtual addresses at the proxy at both end

4

hosts, source address re-writing is necessary, even if both the
sender and receiver live in the same address space.

There are two reasons to avoid IP header rewriting. First,
it allows us to support popular applications (e.g., ftp and
H.323) that encode addresses in the packet payload. Sec-
ond, it allows us to deploy network layer middle-boxes, such
as intrusion detection systems, on the overlay data path. We
describe such an application in Section 6.4.1.

In this section, we present a simple solution that avoids
rewriting IP headers. The main idea behind our solution is
to assign virtual interface addresses to the proxies in such
a way that the need for address re-writing is obviated. To
understand our solution better, consider the example in Fig-
ure 3 that shows the headers of a packet as it is forwarded
from LA to LB . The crucial point to note is that proxy at
host A is configured to fake a virtual interface with address
IPPA that is different from the host’s Internet-routable ad-
dress IPA. From the point of view of a legacy application,
this is equivalent to a host with two interfaces: IPPA and
IPA. In order to intercept the packets of the legacy applica-
tions, host A is configured such that all legacy applications
send and receive packets on interface IPPA. As a result, the
source address of an IP packet sent by LA is IPPA. The des-
tination address of the packet is IPV B , which represents the
virtual address returned by the proxy to LA in response to its
DNS request. Similarly, the source and destination addresses
of the packet received by LB are IPV A and IPPB .

Hence, the only way to avoid address rewriting is to let
IPPB = IPV B and IPV A = IPPA. While these con-
straints can be enforced by exchanging the virtual interface
addresses during the control protocol, our implementation
avoids the overhead of an additional round-trip by choos-
ing the virtual interface address of the proxy as a hash of
its public ID. In our example, we have IPPB = IPV B =
10.H(idB) and IPV A = IPPA = 10.H(idA), where H()
is a well-known hash function that maps 256 bit IDs to 24
bits.

In our implementation, we use an address block of size 224 to
allocate the virtual addresses, and so the probability of colli-
sion is not negligible. In case of collision, the proxy reverts
to choosing an available virtual address at random. In such
cases, we no longer preserve the IP header of the packets,
but would continue to support the vast majority of legacy ap-
plications which do not need this requirement. We note that
this technique assumes that applications do not specifically
bind to a particular interface but can receive packets sent to
any interface on the host (e.g., by the use of INADDR ANY).
This assumption holds in practice as most applications sup-
port multiple interfaces anyway.

4 Realization in i3

In this section, we present the realization of the address vir-
tualization technique in i3. We start with a simple scenario in

LA

Proxy

IPVB
� idB

(IPA, idA)

(dst=IPVB, src=IPA) LB

Proxy

IPVA
� idA

(dst=IPB, src=IPVA)

(dst=idB, src=idA)

i3

LA

Proxy

IPVB ���� idBA

idAB ���� IPVB

(dst=IPVB, src=IPA) LB

Proxy

IPVA ���� idAB

idBA ���� IPVA

(dst=IPB, src=IPVA)

(dst=idBA)

i3
idAB idBA

(a)

(b)

Host A (IPB, idB)Host B

(IPA)Host A (IPB)Host B

Figure 4: Two design choices for the i3 proxy. (a) Per-host Identi-
fiers (b) Each host maintains an ID for every other host it commu-
nicate with.

which both the proxy and the legacy applications run on the
same machine. We remove this assumption in Section 4.4.

We now describe the three main aspects of the i3 proxy de-
sign in detail: how i3 identifiers are mapped to underlying
connections, how packets are tunneled over i3 (data plane),
and how this mapping state is installed (control plane).

4.1 Identifier Allocation

In the description of the general proxy, IDs were associated
with hosts. In i3, this would mean that each host would main-
tain only one trigger in i3, and each i3 encapsulated packet
carries both the destination and the source IDs. An alternate
realization of ID mapping that i3 allows is using the notion
of public and private triggers (refer Section 2).

Figure 4 illustrates these two possible realizations when a
legacy application LA running on host A contacts applica-
tion LB running on host B. In the first scenario, proxies at
A and B maintain only one ID each, idA and idB respec-
tively. In the second scenario, in addition to the ID used for
initial communication (public IDs), hosts maintain a sepa-
rate private trigger for every end-host it communicates with.
Hosts A and B maintain IDs idAB and idBA for communi-
cating with each other, along with the mappings required to
perform overlay↔IP translations.

Using private triggers has the following two advantages.
First, in the case of i3, an end-host can protect itself against
DoS attacks by just removing the private trigger correspond-
ing to the malicious host [12]. Hence, all the the packets from
the malicious host will be dropped in i3. Second, the fact that
an overlay packet does not need to contain a source ID trans-
lates to a non-trivial saving of 32 bytes per packet. However,
the downside of the second realization is that the number of
triggers the end-host needs to maintain in i3 can be quite
large. We now discuss how we use the anycast primitive in
i3 to achieve the best of both these realizations.

Efficient State Maintenance. At one extreme, a proxy A

5

(a)

A

B

C

D

idAB A

idAC A

idAD A

(dst=idAB)

(dst=idAC)

(dst=idAD)

A

B

C

D

idA* A

(dst=idAB)

(dst=idAC)

(dst=idAD)

(b)

Figure 5: (a) Host A maintains a trigger into i3 for every host
it communicate with. (b) Host A maintains a single trigger with a
prefix shared by IDs idAB , idAC , and idAD .

can choose the IDs of all its triggers such that they share the
same prefix p, and then insert only one trigger with prefix p
in the infrastructure (see Figure 5). Since packets forwarded
by i3 to the end-hosts contain the IDs that they were sent to,
the proxy can determine which connection the packet was
sent to.

While this approach does not undermine any host-specific
policies that can be implemented purely at the end-hosts,
this anycast optimization would prevent the proxy from ex-
ercising DoS protection features of i3 [12]. If anycast is em-
ployed, an end-host can stop a DoS attack only by dropping
the shared trigger, which, in this case, would sever all ex-
isting connections. An end-host can strike a middle ground
by associating distinct triggers to the more important con-
nections, and triggers with shared IDs to the less important
ones.

4.2 Data Plane: Packet Tunneling

As shown in Figure 4(b), the proxies need to maintan the
following mappings to perform packet tunneling: (a) local
virtual address to remote private and public triggers, and (b)
local private trigger to local virtual address.

Packets sent by local applications destined to local virtual
addresses are encapsulated and sent to the remote private
ID. Packets received on the local private ID are decapsu-
lated, and sent to the application after the source address is
re-written. For instance, in Figure 4(b), the proxy at A uses
the mapping IPV B→idBA to tunnel packets sent by LA to
B, and the mapping idAB→IPV B to re-write the source ad-
dress of the packets from B.

A proxy can reduce the latency on the data path by choos-
ing its private IDs to reside on nearby i3 nodes. One such
mechanism is described in [24]: the basic idea is for each
proxy to independently sample the ID space and determine
the latency to a particular ID. This mechanism can be imple-
mented without knowledge of all the i3 servers and the IDs
each server is responsible for.

4.3 Control Plane: Installing Mapping State

In this section, we present a protocol for installing the map-
ping state at proxies. We use the terms client proxy and
server proxy to refer to the proxy when it performs the opera-

DNS query
for nameB obtain IPB

allocate IPVB

allocate idAB trigger insert

trigger ack

IPVB ���� idBA

DNS reply,
IPVB

idAB A

(dst=IPVB,..) encapsulate
idB B decapsulate

(dst=idB,src=idAB,…)

allocate IPVA

allocate idBA
trigger insert

trigger ack
idBA B

IPVA ���� idAB

idBA ���� IPVA (src=IPVA,..)

LA Proxy Proxy LB
i3

T
im

e

(dst=IPVA,..)
encapsulate(dst=idAB,src=idBA,…)

via trigger [idAB|A]decapsulate
(src=IPVB,..)

IPVB ���� idB

idAB ���� IPVB

Figure 6: The time diagram of setting up the state at proxies run-
ning on hosts A and B in Figure 4(b).

tions invoked at the initiator (e.g., ssh client) and target (e.g.,
ssh server) of a connection respectively. This separation is
useful while describing the different proxy instantiations in
Section 4.4.

Figure 6 shows the time diagram of the protocol when client
LA initiates a connection to server LB . We assume that host
B maintains a trigger with a well-known ID (idB) at which
host A can initiate the connection. In addition, host A inserts
trigger [idAB |A] to receive packets from B, and host B in-
serts trigger [idBA|B] to receive packets from A. Using the
terminology in [24], we refer to [idB |B] as the public trigger
of B, and to [idAB |A] and [idBA|B] as private triggers. The
main component of the protocol is how proxies exchange the
private identifiers idAB and idBA.

As shown in Figure 6, the protocol can be divided in three
steps: (1) the client proxy resolves the DNS request, inserts
a private trigger for the server, and starts installing the map-
ping state; (2) the server proxy installs the mapping state,
and inserts a private trigger for the client; (3) the client proxy
completes the installation of the mapping state. We describe
the details of the protocol next.

In step 1, the client proxy at A intercepts the DNS request
of LA for nameB, and resolves it to the identifier of the
public trigger inserted by host B, idB . The proxy allocates
a virtual IP address IPV B that is used to impersonate host
B, inserts a private trigger [idAB |A] (to be used by the re-
mote host B to send packets to A) in i3, and stores the
mappings IPV B→idB and idAB→IPV B . At this point, the
client proxy returns IPV B as the DNS reply to LA.

In step 2, client LA sends packets using the address IPV B

which the client proxy intercepts and, using the mapping it
stores, encapsulates as an i3 packet destined to idB . The
client proxy piggybacks the private ID idAB specific to host
B along with this packet.

When the server proxy at B receives the packet, it decapsu-

6

lates the packet and performs a procedure similar to the client
proxy. In particular, the server proxy allocates a virtual ad-
dress, IPV A to impersonate host A, inserts private trigger
[idBA|B] to receive packets from host A and stores map-
pings idBA→IPV A and IPV A→idAB . The server proxy
rewrites the source address of the IP packet to IPV A before
sending it to LB .

In step 3, when the data packet is sent from B to A, the server
proxy piggybacks its private ID idBA to the client proxy.
As an optimization, instead of waiting for a data packet, the
server proxy can send a control packet to LA with its private
ID. On receiving this private ID, the client proxy updates its
mapping to IPV B→idB , idBA.

This protocol is both efficient and robust. Since the private
triggers are inserted at nearby servers, the additional delay
when opening a connection to a new machine is minimal.
We can avoid the delay of trigger insertion by using the any-
cast optimization discussed in Section 4.1. Furthermore, sub-
sequent connections to the same machine simply re-use the
mapping state and the private triggers.

The protocol is robust in the presence of packet losses. If ei-
ther the first packet from A to B or the first packet from B to
A is lost, the client proxy will simply continue to piggyback
the private ID idAB in the subsequent packets sent by LA

and forward these packets to B via its public identifier idB .
Once the client proxy obtains the private identifier idBA, it
sends packets to idBA.

4.4 Deployment Alternatives: Remote Proxies

The basic i3 proxy presented in Section 4 assumes that both
ends of the communication run the proxy. However, there
are practical scenarios where i3-enabled hosts might wish to
contact (or be contacted by) hosts that do not run i3 proxy.
For example, i3-enabled clients may still want to contact
public servers such as cnn.com to take advantage of mo-
bility or service composition. In another example, an orga-
nization might wish to run one proxy for all its machines
instead of installing an i3 proxy on each of them. To support
these scenarios, we have developed an i3-to-IP proxy, which
acts as a proxy for a set of hosts that are not i3-enabled. We
refer to such hosts as legacy hosts.

4.4.1 i3-to-IP Proxy

In this section, we consider an i3-to-IP proxy deployed to
facilitate an i3-enabled client to communicate with a legacy
server over i3. Since the functionality of this proxy is very
similar to that of the server proxy, we present only the differ-
ences from the server proxy here (see Figure 7).

Consider an i3-to-IP proxy P that acts on the behalf of a
set of legacy hosts Hp, and let idP be the public identifier
of P . An i3-enabled client that wishes to contact a legacy
server B from the set Hp sends the DNS name of the legacy

LA

Proxy

IPVB ���� idBA

idAB ���� IPVB

(dst=IPVB, src=IPA) LB

Proxy

IPP:PP ���� idAB

idBA ���� IPP:PP

IPP:PP ���� IPB

(dst=idBA)

i3

idAB idBA

(IPA)Host A (IPP)Proxy P (IPB)Host B

(dst=idAB)
(dst=IPA,
src=IPVB)

(dst=IPP:PP, src=IPB)

(dst=IPB, src=IPP:PP)

Figure 7: A remote proxy for legacy application LB .

server along with its own private trigger to idP . When P
receives the DNS request it resolves the request, inserts a
private trigger idBA to set up its end of the i3 connection,
and sends idBA to the client.

In addition, the i3-to-IP proxy plays the role of a NAT box
for the set of servers HP . The i3-to-IP proxy allocates a port
number PP that is used, together with its address IPP , to im-
personate host A to host B. In particular, the i3-to-IP proxy
forwards the packets from host A to B using the source ad-
dress and port number (IPP :PP), and it forwards the packets
received at (IPP :PP) to host A using ID idAB .

We allow users to specify routing policies for a legacy DNS
name, which indicates whether packets to that host should be
sent directly over IP or through an i3-to-IP proxy (identified
by its public trigger).

4.4.2 IP-to-i3 Proxy

In this section, we consider the case where the client does
not run a proxy. Instead this functionality is implemented by
a special proxy, called IP-to-i3 proxy, that sits between the
client and either an i3-enabled server or an i3-to-IP proxy.
The functionality of IP-to-i3 proxy is almost identical to the
client proxy. The key differences between the client proxy
and the IP-to-i3 proxy are that the DNS request sent out by
the legacy client has to reach a valid name server which the
proxy should have control over, and that the address that the
name server returns has to be a real Internet-routable address.

Our solution is very similar to the scheme implemented in
AVES to offer transparent connectivity to machines behind
NATs [16]. As a result, our solution shares the same fun-
damental limitations with AVES. Since DNS queries can be
recursive, the proxy (acting as the name server) is not guar-
anteed to know the IP address of the legacy client that made
the DNS request. Hence, it has to use a heuristic to correlate
a DNS request and the first data packet. We discuss how we
partially address this issue in Appendix 11.

4.5 Tradeoffs in Functionality

Our solutions for the three deployment scenarios involve
tradeoff between several factors that we outline in Table 1.
Firstly, while the remote proxies provide an alternative when
running the basic i3 proxy on the end-host is not possi-
ble, they are limited in their support for mobility, NAT and
preservation of IP headers. Secondly, the IP-to-i3 proxy also

7

Table 1: Deployment Scenario Vs Properties

i3 proxy i3-to-IP proxy IP-to-i3 proxy

Access Required End-host End-host DNS server
Additional Infrastructure Required None Dedicated Machine Waypoint Machines

Preserving IP headers Yes No No
Mobility Yes Limited (Only Client) Limited (Only Server)

NATed Hosts Supported Yes Limited (Only Client) Limited (Only Server)
Name Resolution Local Resolution Remote DNS Resolution Allocation Authority

requires control over a DNS server for a domain name, and
in general, the remote proxies need dedicated machines to
run on. Finally, the name resolution scheme also differs in
these deployment scenarios: an i3-to-IP proxy resolves a
DNS name on the behalf of i3-enabled hosts and an IP-to-
i3 proxy uses its private address book to resolve i3 names.
This implies that the IP-to-i3 proxy has to manage allocation
of the i3 DNS namespace seen by legacy IP clients.

5 i3 Revisited

Deploying real applications with the proxy has helped us
identify certain functionalities desired by users. While some
of these functionalities (such as connecting to legacy servers
through i3) can be handled by proxy and purely at end-hosts,
others require modification to the infrastructure/overlay. In
this section, we discuss two such issues and discuss how we
address them. First, while the very large ID space of i3 al-
lows us to uniquely identify every computer and device in
the world, the standard i3 implementation does not allow
one to access machines behind NATs or firewalls. Second,
some users were concerned about the fact that every packet
was relayed through at least one i3 node; they wanted the
flexibility of circumventing i3 for the data path.

5.1 Accommodating NAT Boxes

In this section, we present a simple modification to i3 in or-
der to accommodate end-hosts behind NATs. The modifica-
tion happens only on the control plane; data forwarding is
unmodified. The main idea is to rely on the control plane
protocol initiated by the host for inserting triggers in i3. Dur-
ing trigger insertion, the NAT allocates a globally routable
address through which external hosts can contact the NATed
host. Our solution ensures that other hosts only use this NAT-
allocated address to contact the host behind the NAT. This
solution requires no changes or configuration of the NAT box
as trigger insertion is initiated by the end-host.

Figure 8 illustrates our solution. Let IPA be the (locally
valid) IP address of a host behind a NAT, and let Pproxy be
the port number of the proxy. Assume the proxy inserts a
trigger [idA|IPA:Pproxy]. The fields dst and src represents
the IP destination and source addresses of the packet, and
the field retaddr represents the address of the proxy that has

LA

Proxy

Host A (IPA)
NAT (IPN)

dst=IPF:..
src=IPA:Pproxy
trigger=[idA|IPA:Pproxy]
retaddr=IPA:Pproxy
… idA IPN:PN

dst=IPF:..
src=IPN:PN
trigger=[idA|IPA:Pproxy]
retaddr=IPA:Pproxy
…

dst=…
src=IPF:...
trigger=[idA|IPN:PN]
retaddr=IPN:PN
…

IPF

IPT

Figure 8: Supporting NATs in i3.

generated the message. Note that the dst field is set to the
address of an i3 node known by the end-host (IPF , in this
case). This node is not necessarily the node where the trigger
is ultimately inserted. Upon receiving the trigger insertion
packet, the NAT box translates the source address and port
number of the packet, IPA:Pproxy, to IPN :PN where IPN

is the IP address of the NAT box, and PN represents the port
number used by the NAT box to identify IPA:Pproxy.

When the packet arrives at the first i3 node, IPF , the node
checks whether the packet’s dst and retaddr fields are the
same. If not, the node concludes that the packet has traversed
a NAT and overwrites retaddr with the packet’s source ad-
dress. This enables cache messages to be sent to the NAT. In
addition, if the trigger points to an IP address (which is the
case in this example), the i3 node also overwrites the second
field of the trigger. If the trigger points to another ID, the i3
node does not modify the trigger. The packet is then routed
to the i3 node IPT that is responsible for idA. Upon receiv-
ing the packet, node IPT inserts, challenges, or refreshes the
trigger. Thus, the control plane protocol ensures that triggers
point to only globally valid IP addresses. This allows the data
forwarding to work seamlessly.

The protocol we have described however cannot support cer-
tain types of restrictive NATs [20] such as restricted cone
NATs and symmetric NATs which allocate address and fil-
ter packets based on source and destination addresses. In our
example, this means that IPT cannot send packets using the
address IPN :PN , since this address is allocated only for the
source-destination pair (IPA, IPF). To get around this prob-
lem, we force the proxy to contact IPT directly during trig-
ger insertion, so that an address is allocated by the NAT for
the i3 server IPT .

8

5.2 Shortcuts

In the original i3 design, every packet is relayed through at
least one i3 node. While this indirection is necessary for use-
ful functionalities such as mobility, anonymity, and access to
machines behind NATs, it is, in general, less efficient than di-
rect IP communication. To alleviate the efficiency problem,
we propose a straightforward modification to i3: we allow
the communication path between an sender and receiver to
circumvent i3. We refer to this technique as shortcut. Short-
cuts are used only if both the sender and the receiver allow
its use. Shortcuts apply only to triggers of the form (id, R)
where R is the IP address of the receiver and the sender sends
packets addressed to id.

The shortcut technique allows the sender and the receiver
to express their preference for using shortcut in the data
and trigger insertion packets respectively. Consider a host A
sending a data packet to ID idBA. When the packet reaches
the i3 node storing trigger [idBA|B], if either the data packet
or the trigger do not have the shortcut preference set, the
i3 node sends a cache reply message to A and forwards
the message to B. Otherwise, the i3 node just forwards the
packet to host B, and lets the proxy on host B reply with a
cache message to A. After receiving the cache message from
B, proxy A sends all subsequent i3 packets directly to the
proxy B.

Note that this protocol does not work if the sender and the
receiver are behind NATs (of the restricted cone or sym-
metric kind). This implies that shortcuts should not be used
by a a NATed host for sending data or inserting triggers.
An end-host might also avoid using shortcuts to preserve its
anonymity or to maintain connectivity under mobility.

With shortcuts, the role of i3 reduces from a routing infras-
tructure to a lookup infrastructure. The natural question that
follows is: why would an end-host that prefers shortcuts use
i3 instead of sending packets directly via IP? For some appli-
cations, i3 provides a better lookup infrastructure than DNS
in that it allows end-hosts to quickly update their triggers. In
the above example, A′s proxy maintains the cache entry of B
by soft state. This implies that if B moves during the course
of the communication, once the cache entry times out, A′s
proxy would revert to sending packets addressed to idBA to
i3, and eventually to the new location of B.

6 Applications

In this section, we discuss four application scenarios sup-
ported by the i3 proxy that we have experience with: en-
abling access to home machines behind NATs, secure In-
tranet access, anonymization, and middle-box applications
(e.g., intrusion detection).

6.1 Accessing Machines Behind NATs

Users today use ad-hoc mechanisms to access their home
machines behind NATs. This problem can be solved by a
straightforward use of i3 proxy: the home machine runs a
i3 proxy and the user can use i3 to contact his machine
from elsewhere. This solution requires no changes or re-
configuration of the NAT box.

6.2 Secure Intranet Access

For security reasons, organizations typically would like to
provide restricted access for connections into their Intranet
from outside. To this end, VPN-based (Virtual Private Net-
works) solutions are currently used in conjunction with fire-
walls (for more information on VPNs, refer to [1]). We now
describe how i3-to-IP proxy can be used as an alternative for
secure Intranet access, and discuss the potential advantages
over VPNs.

In this scenario, the i3-to-IP proxy runs inside the organiza-
tion and hence has unrestricted access to all the intranet ma-
chines. External end-hosts relay through the i3-to-IP proxy
in order to access Intranet machines. Authentication of exter-
nal end-hosts is a fundamental requirement in this scenario
and to this end, we added an authentication wrapper over the
i3-to-IP proxy.

Our authentication mechanism for the i3-to-IP proxy is
based on a simple RSA public-key based protocol similar
to ssh. We assume that there is some out-of-band mech-
anism for the i3-to-IP proxy and a legitimate client proxy
to exchange their public keys (e.g., smart cards). Our au-
thentication protocol is a simple challenge-response protocol
(which incurs two additional round trips). Only if the authen-
tication mechanism is successful, the client proxy obtains a
private trigger through which it can contact the the i3-to-
IP proxy. Communication from this point onwards proceeds
just as before. Unlike ssh which encrypts all data packets
using session keys negotiated in the authentication phase, we
do not perform any encryption operation on the data path to
avoid additional overheads. Resistance against a man-in-the-
middle adversary who hijacks an authenticated connection
can be obtained by application-level end-to-end encryption.

Our i3 based solution has two advantages over VPN-based
solutions:

• Multiple intranets: Using an i3-to-IP proxy, a client can
access multiple intranets at the same time. In contrast,
existing VPN solutions do not usually support this fea-
ture. If both the intranets use the same address range,
then connecting to both intranets can be impossible.

• Security: Since a VPN client gets a virtual interface ad-
dress on the organization’s network, an infected client
can potentially infect internal machines to which the
client has unrestricted access to. Such an infection is
hard to perform in our case. This is because an infected

9

idM

idAB

idBA

idM, idBA data

idAB data

idBA data

idM, idAB data
client A

server B

i3

middle-box

Figure 9: Example of using a middle-box with ID idM . The private
IDs of the end-hosts are idAB , and idBA, respectively.

client cannot access any Intranet host directly using its
real IP address. Moreover, only the addresses in the vir-
tual address range that have been allocated by the proxy
for ongoing connections are vulnerable.

6.3 Anonymization

In the current Internet, an end-host who wishes to con-
tact other end-hosts anonymously relays its traffic through
a trusted third party. Examples of such schemes include re-
mailers that relay email anonymously [10] and web surfing
anonymizers [4]. This mechanism is naturally emulated by
an i3 proxy that relays its traffic through i3 (without using
shortcuts), as such a proxy reveals only its private triggers to
the server proxy. This solution assumes that the i3 infrastruc-
ture is trusted. One way of strengthening the anonymity guar-
antee is to choose a random i3 server as a relay rather than
the closest i3 server. The performance experienced by the
user is determined by his latency to the i3 server he chooses
to relay through: clearly, choosing a random i3 server in-
curs an additional performance penalty. In fact, the user can
trade between the level of anonymity and performance. Note
that preserving IP headers according to the address alloca-
tion mechanism in Section 3.3 leaks information about the
identity of the client: a server can identify other requests
initiated by the same client by using the virtual address ex-
changed during private trigger exchange. If the client desires
anonymity, it can either periodically change the virtual ad-
dress assigned to its applications (which affects ongoing ses-
sions) or simply allow its IP headers to be modified. Note
that our approach also assumes that application-level identi-
fying data (e.g., cookie data) is removed at the client proxy
itself.

6.4 Middle-box Applications

We now discuss a more general class of applications enabled
by the i3 proxy. Several useful functionalities such as In-
trusion Detection ([18]), QoS ([26]) can be conceptually
viewed as being achieved by imposing a middle-box on the
data path. We describe how such a middle-box can be ac-
commodated by the i3 proxy.

i3’s primitive of stack of IDs enables the i3 proxy to support
middle-boxes in a seamless fashion. First, we describe how
a client proxy can impose a middle-box on its path and then
describe how a server proxy can do the same. An i3 client
proxy A that wishes to communicate with another i3 server

proxy B through a middle-box M addresses its data packets
to the stack [idM , idBA] where idM is the public trigger of
M , and idBA is the private trigger of B (see Figure 9). Dur-
ing control plane negotiations, A also informs B that packets
sent to A should be addressed to the stack [idM , idAB]. This
protocol ensures that data packets are sent in both directions
through the middle-box. An i3 server proxy that wishes all
users contact it through a middle-box can use a similar pro-
tocol to achieve the same. Note that this solution allows B
to address its packets directly to idAB and thus subvert the
middle-box: this can be prevented by some protocol between
the client proxy and the middle-box (e.g., the middle-box
marks packets in a special fashion). Our solution also allows
the middle-box to authenticate client proxies, if it desires to
do so.

This proxy-based solution has several advantages over cur-
rently used solutions. Today, setting up a data path through
a middle-box is typically done either in an end-host oblivi-
ous fashion, or by application-specific configuration such as
using HTTP proxies. The first alternative requires that the
middle-box be placed at specific topological locations (e.g.,
behind the access link of a network) over which end-hosts
typically have no direct control. The second alternative re-
quires users to configure every application of interest. In con-
trast, our proxy-based solution allows any arbitrary host to
serve as a middle-box and does not require any application-
specific configuration. Furthermore, our solution can use i3
anycast to distribute the middle-box functionality over sev-
eral machines.

6.4.1 Intrusion Detection

As a proof of concept, we have implemented an intrusion
detection system that can be used by any i3 enabled client.
Our system is based on Bro [18], a well-known intrusion
detection software. This example illustrates not only how
legacy applications can use the middle-box functionality, but
also how the middle-box functionality can be realized using
legacy software. Our implementation involves an i3-specific
shim layer that runs on the same machine as Bro. This shim
layer acts as an i3 middle-box in order to capture packets sent
between i3 proxies and rewrites such packets with virtual
source and destination address to emulate an conversation
between two virtual hosts. Note that no rewriting is required
if the source and destination preserve IP headers, in which
case, the middle-box uses the virtual addresses exchanged
during trigger negotiation. Bro captures these rewritten pack-
ets and performs analysis in order to identify potential at-
tacks. We assume that end-hosts are informed of these at-
tacks in some out-of-band fashion e.g., by sending alerts to a
trigger specified by the end-host.

An useful type of analysis performed by Bro is stateful anal-
ysis which maintains per-flow state while analyzing packets,
e.g., reconstructing TCP sessions in order to detect certain at-

10

Figure 10: Analysis performed by Bro

tack signatures. This requires the shim layer to re-write the IP
headers of all packets belonging to a given session with the
same source and destination IP addresses. Thus, the i3 shim
layer needs to maintain state for each source-destination pair.
In order to install this state, we also relay the control mes-
sages that negotiate the private triggers between the end-host
proxies through the middle-box using ID stacks.

We deployed Bro on a FreeBSD machine in Berkeley along
with the i3 shim layer, through which users can route their
traffic by configuring their proxies. We discuss two examples
of possible uses to illustrate the flexibility of our implemen-
tation. Figure 10 illustrates a ftp analysis performed by Bro
on the traffic to a server proxy running a ftp server that im-
poses the middle-box on the path. This ftp analysis identifies
an attempt by badguy to upload a file called eggdrop, the
name of a well known backdoor. Another example illustrated
in the figure is a http analysis of the traffic of a client proxy
browsing www.nytimes.com through two middle-boxes:
the Bro middle-box and i3-to-IP proxy. The http analyzer
in Bro identifies the multiple connections initiated by the
browser and the GET requests in each of these connections.
Also note that in the first example, the proxies preserve the
IP addresses (10.1.244.127, 10.2.51.9) and thus reveal their
identity to the middle-box. In the second example, the prox-
ies contact the middle-box anonymously, and the middle-box
assigns its own virtual addresses (10.0.0.1 − 10.0.0.4). The
second example illustrates the practical necessity of short-
cuts: without shortcuts, an additional overhead of 4 Internet
hops would be imposed even for clients that do not desire
anonymity.

Our solution has certain fundamental limitations as to the
type of analysis that can be performed by Bro. Due to the fact
that an end-host can contact the middle-box anonymously,
it is not possible for Bro to correlate information gleaned
from different communication sessions. Note however that
an user of the Bro-middle box can always choose to reveal
his identity to Bro in order to allow such analysis. Even un-
der the assumption that the end-host contacts the middle-

box anonymously, our implementation allows most analysis
mechanisms that are used in currently deployed intrusion de-
tection systems such as signature-based attack detection.

7 Implementation

We have implemented the i3 proxy and its variants, the i3-
to-IP proxy and IP-to-i3 proxy, in C/C++ in Linux. Our
implementation is available in source and binary format at
i3.cs.berkeley.edu. We first discuss our implemen-
tation of the address virtualization and tunneling techniques
that apply to all i3 proxy variants. Then, we give details of
our implementation of the i3 proxy and the i3-to-IP proxy
(for details about the IP-to-i3 proxy, refer to Appendix 11).

7.1 TUN Based Address Virtualization

The address virtualization technique uses tun [2,28], a soft-
ware network loopback interface, to capture packets sent by
local applications. The tun interface allows user-level pro-
grams to capture packets from kernel space. iptables and
route [28] are used to redirect DNS packets and pack-
ets sent to virtual address respectively to the tun interface.
Thus, a legacy application need not be recompiled or linked
with new libraries. The tun device also supports packet
writes: packets written on the interface can be sent to the lo-
cal application. This feature is used to send the decapsulated
i3 packets to the local application.

There are three limitations of our implementation of the ad-
dress virtualization technique. Firstly, the proxies require ad-
ministrator privileges to use the tun device. While this is
not a concern for the i3-to-IP proxy and the IP-to-i3 proxy
which will be deployed by few individuals and organizations
on dedicated machines, this requirement might be inconve-
nient for users who wish to run the i3 proxy. Secondly, the
use of the tun device also implies that only per-host poli-
cies can be specified; per-user policies cannot be specified.
Thirdly, using the tun device leads to additional overhead
due to copying of packets from kernel to application space
and vice-versa.

To avoid these limitations, one can implement a dynamic li-
brary that can hijack desired system calls. We leave the im-
plementation of such a library to future work.

7.2 Tunneling

Tunneling involves two main operations: encapsulation at the
sender and decapsulation at the receiver followed by address
rewriting. Packet encapsulation mechanism adds an over-
head of 37 bytes per packet due to i3 headers. Addition of
such headers can lead to fragmentation due to MTU con-
straints. An application that wishes to avoid fragmentation
can perform end-to-end MTU discovery. The address rewrit-
ing mechanism rewrites the addresses and incrementally up-
dates the IP and transport player checksums [13]. We have
implemented address rewriting for TCP, UDP and ICMP.

11

Note that address rewriting is performed only when when
the address allocation mechanism described in Section 3.3 is
not possible (e.g., the virtual address is already allocated).

Maintaining State Consistency. In Section 4.3, we have
described how the proxy’s tunneling state is installed; now
we discuss when this state is removed. Intuitively, the proxy
should maintain the mapping state longer than the legacy ap-
plication maintains the virtual address returned by the proxy.
The proxy refreshes the mapping state every time one of the
following two events occur: a packet is forwarded using the
mapping state, or a DNS request for that mapping state is
invoked. If none of these events happen, the proxy removes
the mapping state after a predefined interval of time TO.

We consider two issues when setting the value of TO: the de-
fault TCP keep-alive timer which is 7200 sec, and the inter-
action with the DNS caching. Despite the fact that the proxy
always returns a DNS reply with a Time-to-Live (TTL) value
of zero, some popular applications (e.g., Internet explorer)
ignore the TTL and cache the address. However, in our expe-
rience we found that none of the applications we used cache
the DNS reply for more than 7200 sec, which is consistent
with the findings reported in [16]. As a result, we chose the
default value of TO to be 7200 sec. While this is a large
value, note that the overhead to maintain the mapping state
is minimal when the proxy uses the anycast optimization. In
this case, the proxy maintains the mapping state only locally;
no trigger is inserted in the infrastructure.

Another scenario in which such incorrect behavior can arise
is if the i3 proxy is restarted during a application session
(gracefully or otherwise). The application would continue to
try to connect to virtual addresses which the proxy no longer
has state for. To mitigate this problem, the i3 proxy logs its
state periodically to a file. When the proxy starts up, it can
optionally reconstruct its state by reading in the log from the
file.

7.3 i3 proxy

The i3 proxy is implemented as a multi-threaded applica-
tion with two main threads: the packet capture thread and
the overlay interface thread. The packet capture thread reads
from the tun device to capture application-generated DNS
requests and data packets. The overlay interface threads re-
ceives packets from the i3 infrastructure and sends them to
local applications. The i3 proxy has been ported to the Win-
dows (XP, 2000) under Cygwin using vtun [2] (a Windows
port of tun). The i3 proxy is designed to be highly flexible
and allows configuration through an XML configuration file.
The configuration file also allows the user to specify which
legacy DNS names should be redirected to an i3-to-IP proxy.
For ease of configuration, these policies are expressed as a
sequence of regular expressions for the name, along with a
policy for names that match that regular expression (the pol-
icy specifies whether to relay through an i3-to-IP proxy or

directly via IP).

7.4 i3-to-IP proxy

The i3-to-IP proxy is implemented as two main threads: the
i3 interface thread and IP interface thread. The i3 interface
thread interacts with an i3 proxy in setting up private trig-
gers etc, while the IP interface thread maintains the mapping
between private triggers and ports allocated on behalf of an
i3 host. The i3 interface thread also spawns a DNS helper
thread for doing non-blocking DNS lookups: this allows it to
scale to multiple users. If the DNS query cannot be resolved,
then an error message is returned to the connecting proxy,
which then informs the application. The IP interface thread
maintains the private trigger to port mapping in two steps: it
stores a private trigger to virtual address mapping, and uses a
software NAT to maintain the mapping from virtual address
to fake port. We used a Linux software NAT implementation
for the i3-to-IP proxy, which includes packet-rewriting sup-
port for several applications (Linux Kernel 2.4.22 has sup-
port for FTP, H.323, PPTP, SNMP, TFTP etc.). The i3-to-IP
proxy does not support ICMP since there is no information
in an ICMP packet (such as port numbers) to permit multi-
plexing of a single IP address among multiple hosts.

8 Evaluation

In this section, we first present results micro-benchmarking
the different costs involved in the data and control path of
the proxy. The benchmarking results indicate that the over-
head of using the proxy is minimal, and it can support high
data forwarding rates. We then present wide-area experi-
ments that show that, in practical scenarios, using the proxy
along with i3 performs almost as well as underlying IP.
These experiments also indicate the performance advantages
of the shortcut option (especially throughput). Even though
we have implemented and deployed the applications in Sec-
tion 6, we do not present any wide-area benchmarking results
for them since the performance does not reflect anything on
their instantantion in i3 (since the proxy adds minimal over-
head, as our microbenchmarking results show).

8.1 Micro-benchmarks

All our micro-benchmarks were conducted on a 2.4 GHz
Pentium IV machine with 512 MB RAM running Linux
2.4.20. Timing was done using gettimeofday at the user
level. We report the timing numbers as a median of at least
100 runs (the variation we obtained was minimal).

We used a simple in-house tool that sends data of various
sizes and rates as the legacy client for the proxy. For con-
ducting micro-benchmarks, we instrumented the proxy and
the tool reporting the time at pertinent checkpoints.

i3 Proxy: Data Path Overhead. In comparison to a legacy
application running over the host IP stack, the use of the
proxy adds two memory copies of the data: from kernel to

12

the user space and back, for both sending and receiving pack-
ets. Figure 11 reports results for the send and receive times
of a single packet of size 12003 bytes at the sender and re-
ceiver. We split up the total send and receive time into three
phases: (a) time taken to move a packet between application
and proxy, (b) proxy processing overhead, and (c) time taken
for proxy to send/receive a packet.

Total send time per packet = 73

App send to Proxy Proxy processing Proxy send
42 (57%) 11 (15%) 20 (28%)

Total recv time per packet = 44

Proxy recv Proxy processing Proxy to App
17 (39%) 4 (9%) 23 (52%)

Figure 11: Split-up of per-packet overhead of send and recv with
the proxy. All numbers are in microseconds.

We see that the processing time of the proxy is very little
(15% for send and 9% for receive) and much of the over-
head is for transferring the packet from the application to
the proxy (57% for send and 52% for receive). This over-
head can be avoided by a dynamic library implementation as
mentioned before. The total send time indicates that the raw
throughput that can be sustained is 13, 700 packets/second
(or 131 Mbps).

i3 Proxy: Lookup Overhead. We first quantify the overhead
incurred by the proxy in the control path (i.e., resolution of
names). We distinguish between two cases when an applica-
tion makes a DNS request: either the DNS name has already
been resolved or it is being resolved for the first time. In
the first case, the proxy immediately returns the name with a
minimal processing overhead of 15 microseconds. In the sec-
ond case, the proxy performs additional operations to setup
the state and hence takes longer (74 microseconds).

8.2 Wide-area Experiments

Over a deployment of i3 on PlanetLab, we compare the i3
proxy to the underlying IP path based on two metrics, round-
trip time (RTT) and TCP throughput. In all our experiments,
each proxy was configured to use the closest i3 server.

Basic i3 Proxy. We performed experiments with the proxy
running on three machines at different locations: one each
at Berkeley, UT-Austin and UIUC. The fact that the basic i3
proxy requires administrator privileges made it difficult for
us to procure more machines. We measure RTT with an in-
house custom tool that uses UDP packets, and throughput
with ttcp, a popular tool for measuring TCP throughput.

Figure 12 shows the RTT (left) and throughput (right) for the
following cases: (a) over i3, (b) over i3 using shortcut, and
(c) direct IP. For i3, we consider the first packet RTT in ad-

3We used this packet size in order to avoid fragmentation due to
addition of headers

 0

 20

 40

 60

 80

 100

 120

UCB-Austin

UCB-UIUC

UIUC-Austin

La
te

nc
y

(m
s)

FirstPacket
I3

Shortcut
IP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

UCB-Austin

UCB-UIUC

UIUC-Austin

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

I3
Shortcut

IP

Figure 12: i3 proxy wide-area experiments: (a) latency and (b)
throughput.

dition because the first packet is routed via Chord. We make
this distinction because i3 caching ensures that the subse-
quent packets are sent between i3 servers directly via IP.

Since Chord routing takes a logarithmic number of hops on
average to route to an i3 node, the first packet latency is
high in one case. The key point to note is that i3 latency is
only about 7% worse than the IP latency. Furthermore, using
shortcuts makes the latency almost equal to the IP latency.

The throughput reduction by choosing an i3 path is between
12 − 24%. We ascribe this to the fact to the increase in
RTT (and hence TCP throughput goes down [17]) and in-
efficiencies due to additional forwarding through the shared
PlanetLab infrastructure. However, using shortcuts achieves
a throughput of within 2% of the throughput of the direct
path.

i3-to-IP proxy. Here, we consider the scenario where the i3-
to-IP proxy is deployed on behalf a set of clients who want to
contact legacy Internet servers. Consistent with this scenario,
we ran an i3 proxy and an i3-to-IP proxy on machines in
Berkeley, and used this configuration to browse the web.

We quantify the control overhead in resolving a DNS request
in three cases. First, we measured the baseline lookup time
for a DNS request without proxies to be 1.78 ms, which is
nearly the latency between the host and its DNS server. Our
second metric was the overhead of resolving a DNS request
using an i3 proxy configured to route this DNS request via
IP. Recall that the i3 proxy taps all DNS requests, irrespec-
tive of whether they are forwarded over i3 or not, and this
metric measures the overhead involved. We measured this
latency to be 1.82 ms pointing to a processing overhead of
40 microseconds. Finally, we measured the latency of using
the i3-to-IP proxy for contacting legacy web servers to be
4.24 ms, which is mainly due to the wide-area latency (2.03
ms) between the i3 proxy at the client and the i3-to-IP proxy
via i3.

To quantify the cost of i3-to-IP proxy on the data path, we
consider six Mozilla mirrors (in USA and Europe), and com-
pare the RTT and throughput obtained by using the i3-to-
IP proxy (with and without shortcuts) against the IP RTT
and throughput. For computing RTT, we used ping, and for
throughput we measured the download time of a 5.5MB file.

Figure 13 shows the RTT (left) and throughput (right) re-

13

 0

 20

 40

 60

 80

 100

 120

 140

 160

CA Georgia

Utah
Oregon

Indiana

Belgium

La
te

nc
y

(m
s)

I3-Latency
I3-Shortcut
IP-Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

CA Gatech

Utah
Oregon

Indiana

Belgium

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

x 10

I3-Throughput
I3-Shortcut

IP-Throughput

Figure 13: i3-to-IP proxy wide-area experiments: (a) latency and
(b) throughput. Note that CA mirror’s throughput is scaled down by
a factor of 10 to fit the scale.

sults. For RTT, the cost of going through the i3-to-IP proxy
is less than 2% and drops to 0.5% if shortcuts are used. For
throughput, the penalty when i3 is used is high if the direct
throughput is itself very high; in other cases the penalty was
less than 20%. For instance, the raw bandwidth to the CA
mirror was about 52 Mbps (note that this is scaled down in
the figure to fit the scale) whereas the i3 throughput was 26
Mbps. However, with shortcuts, the loss in throughput is less
than 5%.

9 Related Work

The problem of providing support for legacy applications has
been addressed by many proposals that aimed to introduce
new functionality in the Internet either in the form of over-
lays, or new network protocols [6, 7, 15, 16, 29]. One differ-
ence between these proposals and our solution is that, to the
best of our knowledge, none of these proposals preserve the
IP headers in the presence of NATs and mobile hosts. We
discuss other differences between these proposals and ours
next.

RON [6] uses FreeBSD’s divert sockets to capture packets
from local applications in a fashion similar to the way our
proxy uses the tun device. However, RON uses host IP ad-
dresses as overlay identifiers, which though suitable for a
routing overlay, does not generalize to overlays that sup-
port mobility or NATs. ROAM [29] also uses IP addresses
as overlay identifiers, but these addresses are different from
the end-host IP addresses. This allows ROAM, which is built
on top of i3, to provide mobility, but no support for NATs.

TRIAD [7] proposes an implementation called WRAP
(Wide-Area Relay Addressing Protocol) that modifies the
name lookup mechanism and uses a set of Content Res-
olution Routers for resolving the DNS names. HIP [15]
also requires the modification of the name lookup mecha-
nism at end-hosts and relies on Dynamic DNS enabled with
DNSSEC or a set of rendezvous servers. Unlike these so-
lutions, our baseline solution4 requires no changes to the
lookup protocols.

AVES [16] uses a set of waypoints to stitch together multiple
address spaces through the Internet. Our IP-to-i3 proxy uses

4The only exception is the IP-to-i3 proxy.

the waypoint approach, but unlike AVES it does not require
the modification of NAT boxes. Instead, the IP-to-i3 proxy
relies on i3 to access machines behind NATs.

We also share the broader objective of providing new func-
tionality to legacy applications with TCP Migrate [23]. How-
ever, TCP Migrate [23] modifies the protocol stack, and re-
lies on the DNS infrastructure to provide mobility.

10 Discussion

In this section, we address two natural questions: (a) how
can the proxy design be extended to other overlays, (b) what
are the fundamental limitations of the proxy design? We then
summarize our experience with building the proxy and using
it with legacy applications in practical scenarios.

Generalization to Other Overlays. While so far we have
only implemented and experimented with the proxy in the
context of i3, we believe that our design can be easily ex-
tended to other overlay networks. Developing the proxy for
a new overlay network requires overlay-specific changes to
the following: (a) the mechanism to resolve names to over-
lay IDs (see Section 3.2), (2) the control protocol to set up
the mapping state (see Section 4.3), and (3) the data packet
encapsulation and decapsulation primitives.

In general, the proxy can be modified to support multiple
overlays simultaneously. For instance, one can specify that
voice conference application traffic should go over a low-
delay RON path, while the traffic to a mobile client should
go over i3. Supporting multiple overlays is one of our goals
for future work.

Limitations. Since the proxy architecturally sits between the
network and the transport layers, it might be hard, if not im-
possible, to enable legacy applications to take advantage of
overlay functionalities designed for native applications. For
example, consider an overlay network that implements mul-
tipath routing to improve the end-to-end throughput. In or-
der to provide such functionality to legacy applications, the
proxy would need to implement transport layer functionali-
ties such as packet buffering and reordering. In general, the
proxy would need to duplicate, at the least, the functionality
of the native application in order to provide the same func-
tionality to the legacy applications. Such an approach is nei-
ther general nor guaranteed to succeed because of the inter-
actions between the higher layers in the protocol stacks of
the native and legacy applications.

Experience. Over three months of using the proxy with i3,
we learned a few lessons (some of which are obvious in ret-
rospect):

Efficiency matters. In spite of the fact that the i3/proxy
combination provides many benefits over IP, the users were
sometimes not willing to trade performance for these bene-
fits. In particular, they were not willing to use the i3-to-IP
proxy or redirect their traffic through the intrusion detection

14

system at the expense of their application performance. This
ultimately led us to add the shortcut option to i3.

Usage is unexpected. Initially, we expected mobility to be
the most popular application of i3. However, this was not
the case. Instead the users were more interested in using i3
for such “mundane” tasks as accessing home machines be-
hind NATs or firewalls, and getting around various connec-
tivity constraints. In one instance, users leveraged the fact
that proxy communicates with i3 via UDP to browse the web
through an access point that was configured to block web
traffic!

Routing infrastructure helps. The fact that i3 is a routing in-
frastructure, instead of just a lookup infrastructure, allowed
us to provide for “free” some very useful functionalities such
as access to services and hosts behind NATs/firewalls, and
end-host mobility. Among the applications in which users
expressed interest, only the intrusion detection application
required us to write some code, and even in that case the
code was just to interface Bro with i3 (see Section 6.4.1).

Different users have different needs. There are several trade-
offs involved in our design and we allow the user to choose
his own sweet spot depending on his requirements. For ex-
ample, preserving IP headers supports applications like ftp
and middle-boxes like Bro, at the cost of anonymity. Short-
cuts provide efficiency at the expense of anonymity and NAT
support. An user can control this tradeoff with simple con-
figuration parameters.

11 Conclusion

In this paper, we have described the design and implementa-
tion of a proxy-based solution that transparently tunnels the
traffic of legacy applications over the i3 overlay. This allows
end-users to use virtually any existing application to take ad-
vantage of the i3 functionality. To illustrate this point, we
have presented four useful applications: access to machines
behind NATs, secure Intranet access, routing user’s traffic
through and intrusion detection system, and anonymous web
download. We have discussed our experience with using the
proxy, how this experience led us to revisiting the i3 design,
and presented several deployment scenarios where users can
get partial benefits even when they cannot install the proxy
at both end-points.

As future work, we plan to extend the proxy to other overlay
networks, and to support multiple overlay networks simulta-
neously. Another venue of future work is to extend the proxy
functionality, for example, to provide protection against DoS
attacks. Ultimately, we plan to enlarge our user base and
gather more feedback to improve the proxy and the i3 de-
sign. As our experience showed, users often find unexpected
uses to the system, which can push the design in a new di-
rection.

References
[1] http://www.cse.ohio-state.edu/˜jain/

refs/refs_vpn.htm.
[2] http://vtun.sourceforge.net/.
[3] Names: Decentralized, Secure, Human-Meaningful: Choose

Two. http://zooko.com/distnames.html.
[4] The Anonymizer. www.anonymizer.com.
[5] vat - LBNL Audio Conferencing Tool. http://www-nrg.

ee.lbl.gov/vat.
[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient Overlay Networks. In Proc. SOSP, 2001.
[7] D. R. Cheriton and M. Gritter. TRIAD: A New Next Genera-

tion Internet Architecture, Mar. 2001. http://www-dsg.
stanford.edu/triad/triad.ps.gz.

[8] H. Eriksson. MBONE: The Multicast Backbone. Communi-
cations of the ACM, 37(8):54–60, 1994.

[9] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler,
N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Josheph,
R. Katz, Z. Mao, S. Ross, and B. Zhao. The Ninja Architec-
ture for Robust Internet-Scale Systems and Services, 2000.

[10] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In Proc.
of NDSS, 1996.

[11] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring
Adoption of DHTs with OpenHash, a Public DHT Service. In
Proc. of IPTPS, 2004.

[12] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Sto-
ica. Taming IP Packet Flooding Attacks. In Proc. of ACM
HotNets-II, Cambridge, MA, Nov. 2003.

[13] T. Mallory and A. Kullberg. Incremental Updating of the In-
ternet Checksum. RFC 1141, January 1990.

[14] S. McCanne and V. Jacobson. vic: A Flexible Framework
Framework for Packet Video. In ACM Multimedia, 1995.

[15] R. Moskowitz, P. Nikander, P. Jokela, and T. Hen-
derson. Host Identity Protocol, 2003. http:
//www.hip4inter.net/documentation/
drafts/draft-moskowitz-hip-08.ht%ml.

[16] T. S. E. Ng, I. Stoica, and H. Zhang. A Waypoint Service Ap-
proach to Connect Heterogeneous Internet Address Spaces. In
Proc. of USENIX Technical Conference, 2001.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical Valida-
tion. In SIGCOMM, 1998.

[18] V. Paxson. Bro: A system for detecting network intruders in
real-time. Computer Networks, 31(23–24):2435–2463, 1999.

[19] Planet Lab. http://www.planet-lab.org.
[20] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy.

STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs). RFC 3489,
March 2003.

[21] J. Saltzer. On the naming and binding of network destinations.
In P. Ravasio et al., editor, Local Computer Networks, pages
311–317. North-Holland Publishing Company, 1982.

[22] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Card-
well, A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker,
and J. Zahorjan. Detour: A Case for Informed Internet Rout-
ing and Transport. Technical Report TR-98-10-05, 1998.

[23] A. C. Snoeren and H. Balakrishnan. An End-to-End Approach
to Host Mobility. In Proc. of MobiCom, 2000.

[24] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In SIGCOMM, 2002.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In Proc. of ACM SIGCOMM, 2001.

15

[26] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: An Overlay Based Architecture for Enhancing In-
ternet QoS. In Proc. of NSDI, 2004.

[27] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the
Web from DNS. In Proc. of NSDI, 2004.

[28] K. Wehrle, F. Pahlke, D. Muller, et al. Linux Networking Ar-
chitecture: Design and Implementation of Networking Prot-
cols in the Linux Kernel, 2004. Prentice-Hall.

[29] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker. Host
Mobility Using an Internet Indirection Infrastructure. In Proc.
of MOBISYS, 2003.

APPENDIX: IP-to-i3 proxy

This section details the implementation of the IP-to-i3 proxy.
The IP-to-i3 proxy is similar to the i3 proxy except that it
does not runs on the legacy client itself. This difference leads
to two issues: the DNS request made by a legacy client for a
i3 host should reach a valid name server which the proxy has
control over and the address that the name server returns has
to be a real Internet-routable address. We address the first
issue by registering the IP-to-i3 proxy as the authoritative
DNS server of a real DNS domain such as i3.6to4.jp.
For contacting an i3 host foo.i3, a legacy client now uses
foo.i3.6to4.jpwhich is eventually resolved by the IP-
to-i3 proxy. However, the proxy might not have any informa-
tion about the client (due to recursive DNS queries). Hence,
the proxy returns unique IP addresses to each new request
from a legacy client (the DNS response has a TTL of zero).

Similar to AVES [16], the IP address returned in response
to DNS queries, is chosen from a set of waypoint machines
under control of the proxy. When the proxy returns the IP
address of a waypoint machine W to a legacy client C, it
informs the waypoint machine W of the destination i3 host
the client C wishes to connect to. W sets up partial state by
negotiating private triggers with the destination i3 host. It
now awaits a TCP SYN packet, and if one arrives within a
period of 1 sec, it assumes that it was sent by the C. It then
establishes state associating the IP address of the C with the
private trigger IDs. This state is then used to tunnel packets
transparently between the legacy client C and the destination
i3 host.

The IP-to-i3 proxy suffers from certain limitations imposed
by the requirement of supporting unmodified legacy appli-
cations. The main limitation arises due to the nature of the
DNS mechanism. The heuristic used by the waypoint to es-
tablish state associated with the legacy host limits the rate
at which new connections can be initiated through the IP-to-
i3 proxy. This heuristic is clearly susceptible to DoS attacks
where a malicious node simply sends SYN packets to way-
point machines. For the case of HTTP, we have removed this
limitation by using HTTP request information in data pack-
ets to deduce the destination server the IP client wishes to
connect to. The second limitation is that the IP-to-i3 proxy
has to maintain an address book on behalf of legacy clients.

16

