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Abstract

Numerous proposals have been written which
attempt to address the problem of topological
addressing (IP) on the Internet today. In order to
be deployed, however, many of these proposed
overlay systems require the impractical task of
rewriting of the TCP/IP stack to support the new
addressing schemes. The Overlay Convergence
Architecture for Legacy Applications (OCALA) is
a new architecture that attempts to provide a
generic system into which these overlays can be
effortlessly installed as modules and tested,
without the need to rewrite the network protocol
stack. In order to test OCALA’s ease of use and
performance, we wrote an OCALA module for the
Delegation Oriented Architecture (DOA) overlay.
We found that with few lines of code written into a
provided sample OCALA module, we were able to
successfully  implement —a  working  DOA
implementation that could be tested in the OCALA
framework. The performance of the system was not
found to be stellar. However, it was suitable
enough for OCALA to serve as a flexible test bed
for the new Internet overlay proposals which have
been needing an easily deployable framework such
as OCALA.

1 Introduction

OCALA 1is a new network architecture that
provides a generic framework for new Internet
overlay addressing schemes [1,3,4,5,6]. The
project is designed to allow any new overlay to be
plugged in as a module and to be readily used over
networks that also use the OCALA framework.
The end goal for OCALA is to provide an
effective and easily usable test bed for these new
network overlays, by removing the need to rewrite
the TCP stack individually for every overlay.
Until now, the only module plug-ins that had been
developed for OCALA were for the i3 (Internet
Indirection Infrastructure) and RON (Resilient

Overlay Networks) architectures. However, these
modules were developed by the OCALA team
members themselves. In order to prove its
usefulness and effectiveness, it was important to
test the development and deployment of an
OCALA module from outside the OCALA team.

The Delegation Oriented Architecture is a
proposed addressing scheme which focuses on the
delegation to “middleboxes” (e.g. firewalls, NATsS,
etc) which are prominent in Internet
communication today [2]. DOA however, hasn’t
seen a widespread test because its current
implementation requires kernel level changes. As
a result, DOA seemed like the perfect system to
test as a new module for OCALA. If the module
implementation were found to be successful, not
only would OCALA benefit by being tested for
ease of development and performance, but DOA
would also benefit by being implemented in an
easily deployable framework, therefore expanding
its potential test bed to any host on the OCALA
network.

In this project, therefore, our goal was to
merge the work done in these two projects to
answer the following questions: Is the OCALA
framework flexible and generic enough to make it
feasible to write modules for it? Is DOA
reasonable to wuse? Are the two projects
compatible? Is the performance of a working
DOA OCALA module satisfactory?

In order to answer these questions, we had to
do the following things:

= Read and wunderstand the
specifications and documentation

= Read and understand the DOA specifications
and documentation

= Use the knowledge we gained to design and
implement a DOA OCALA plug-in module

= Test the performance of the DOA module
(running over OCALA) for DOA-specific
measures (i.e. number of delegates).

= Evaluate the ease with which such modules
can be developed.

OCALA



Our findings were positive, indicating that
OCALA is indeed a good framework for which to
develop a DOA plug-in and that our DOA module,
while slow, was able to demonstrate the benefits
of DOA’s explicit delegation in an easily
deployable package which could be tested on
many systems.

The rest of this paper is structured as
follows: Section 2 gives background on the design
and implementation of OCALA and DOA, Section
3 discusses various design decisions that we
needed to make for our module, Section 4 outlines
the implementation steps needed to build the
module, Section 5 evaluates the effectiveness of
OCALA and the DOA module and then in Section
6 we present our conclusions.

2 Background
2.1 OCALA

OCALA, at its core, is a proxy that different
overlay modules can plug in to. It intercepts
packets between applications and the network and
gives its overlays a chance to act on the packets
before passing them along.

In the control plane, OCALA intercepts DNS
packets from applications and checks to see if any
of its overlays want to handle the URL. If one
does, OCALA asks this overlay to set up a
connection, a tunnel over the overlay, to the
specified host and returns a fake IP address to the
application. It then stores a mapping between this
fake IP address and the tunnel that the overlay
opened.

From then on OCALA captures any packets
sent to the fake IP address and sends them instead
through the corresponding overlay tunnel.
Essentially, OCALA functions like a NAT that
translates overlay-specific addresses to fake IP
addresses and vice-versa. This allows OCALA to
present an IP like interface to the transport layer
for legacy applications while its overlay modules
send and receive overlay-specific packets on the
network. The layer that does these translations is
known as the Overlay Convergence (OC) layer.
Figure 1 shows how the OC layer fits into the
network stack between the overlays in the
transport layer.
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Figure 1. OCALA layer stack. [1]

The OC layer is itself split into two sub-layers
- the OC Independent sub-layer, or OCI, and the
Overlay Convergence Dependent sub-layer, or
OCD. The OCI layer is where OCALA stores a
mapping between transport layer connections and
overlay tunnel handles. OCIState objects store
necessary connection state between applications
and the OCD layer. The OCD layer, on the other
hand, is where OCALA interfaces with the
overlays.  The OCD layer stores mappings
between tunnel handles and the tunnels
themselves.

The original OCALA distribution included the
source code for the OCALA proxy service, the
OCI and OCD layers, and complete
implementation of an I3 overlay module, all for
Windows or Linux operating systems. It also
included many README files describing how to
compile and run the proxy and the OCD plug-ins.
In addition, an updated distribution included a
SampleOCD overlay module which demonstrated
a barebones implementation of the OCD plug-in
APIs. This SampleOCD module proved to be an
invaluable resource in the development of our own
plug-in.

2.2 DOA

DOA, or the Delegation Oriented
Architecture, is an addressing scheme developed
with middleboxes (firewalls, NATSs, etc.) in mind.
It is designed to allow and hosts to explicitly
control which middleboxes their traffic should be
delegated to before reaching them. An important
feature of this architecture is that it provides
enforcement of this delegation even when the
delegate is off-path, not physically interposed
between the two hosts.



The central idea behind DOA is to provide
unique flat identifiers (eid’s) for every host on the
Internet that conveys identity but not location. In
order for a host to send a packet to another host, it
must first resolve this eid to a location. The
resolution system is built around a DHT that stores
a mapping between eid’s and erecords which
contain information about the host.

These erecords can contain either an IP
address or one or more eid's. This IP address can
either be the address of the host or the address of a
middlebox. The eid’s, on the other hand, by
definition refer to delegates for this host. These in
turn must be resolved recursively to IP addresses
before the host knows where to send its packet.
This allows receiving hosts to completely hide
their IP address from all but their closest delegate
if they desire. Additionally, even without hiding
IP addresses, hosts can confirm that packets took
their required path by validating the packets if
each delegate signs the packets that it processes.

3 Design

3.1 Overview

In this section, we will describe the design
decisions that we made during our implementation
wherever  either of the original two
designs/projects provided room for interpretation
or lacked detail. We also had to make certain
design decisions in order to fit the DOA
requirements into the OCALA framework.

3.2 The Control Plane for OCALA: When and

How to Do DHT Lookups

One of the challenges in developing our DOA
module for OCALA and was determining how and
when to do DHT lookups. OCALA has a built-in
callback mechanism for OCD tunnels to indicate
when they are done setting up. The motivation
behind this callback was to allow time for DNS
queries. We were able to package our DHT
lookups for outgoing connections into this DNS
stage. However, OCALA does not have the same
waiting period built into incoming connections,
because the source of an incoming connection is
written in the packet header.

Since DOA allows for a different backward
path than forward path, however, our module had
to do DHT lookups the first time a packet was sent
on a connection the local hosts did not initiate.

Additionally since DHT lookups can be recursive
in nature, the delay before sending this first packet
could be substantial. We designed a queuing
mechanism to solve this problem. Each time a
packet is sent over a specified tunnel, our module
checks to see if that tunnel has finished resolving
its outgoing eid stack. If it has not, that packet is
added to the tunnel’s queue. When the tunnel
completes its DHT resolution it sends all of the
packets waiting its queue.

Putting the resolution check in the send
method also allows us to defer resolution for
incoming connections until we want to send
something along those connections. This prevents
unnecessary work for connections over which we
do not expect to send any packets.

3.3 Delegation: Packet Forwarding

Another important aspect of our module was
the way in which we designed delegation. Our
design starts with eid resolution via DHT lookups.
We chose to use the hint field of each host’s DOA
erecord to store the host's IP address. The
delegates portion of the erecord can contain either
an IP address or an eid. In the resolution stage,
each tunnel builds a stack of intermediate eid’s,
with the end host on the bottom, based on this
possibly recursive resolution structure. In
addition, it accesses the hint field from each
intermediate erecord and stores the resulting IP
addresses in a stack as well. Whenever packet is
sent through this tunnel, these stacks of eid’s and
corresponding [P addresses are added to the
header. This means that each middlebox on each
packet’s route are fully specified in the header.

The motivation for this design is that it allows
for stateless middleboxes to correctly forward
packets to end hosts without having to do DHT
lookups. This is especially important for
middleboxes that see many connections but few
packets per connection, such as a firewall for a
web server. However, the stack of IP addresses
can be eliminated from the header for all
middleboxes that explicitly store the locations of
the end hosts behind them in some internal state.

We built packet forwarding capabilities
directly into our module so that each host can also
function as a middlebox. Whenever a packet is
received whose header stack length is greater than
one, a short routine pops the eid and IP address
from the top of the stack and immediately sends



the packet to the host specified by the new top of
the stack. Although our implementation does not
filter the packets in any way, it would be trivial to
add a call to a filtering routine that either changes
the packets in some way or simply determines
whether or not to forward the packets. Regardless,
forwarded packets are never passed to the legacy
transport layer on the local machine.

3.4 Security

Although none of the features are currently
implemented, our DOA module is designed to
fully support the security features which the DOA
design provides. Specifically,

= eid generation,

= erecord signing, and

= erecord verification
can all be added easily by a developer with an
understanding of existing security libraries. eid
generation is accomplished through a hash of the
host’s public key. Erecord signing should be
implemented in the registerWithDHT() method of
DOADHT, the DHT interface component.
Erecord verification should be implemented in the
receivedDHTReply() method of the DOAStatelnfo
component.

The interesting aspect of erecord verification
is that since the eid of each host is a hash of its
public key, hosts can be sure not only that an
erecord was not tampered with, but also that the
erecord belongs to the eid whose erecord was
requested from the DHT.

With the exception of guaranteeing the
security of the DHT itself, which is beyond the
scope of this paper, the final piece of the design is
in verifying that packets came from the proper
delegates. With our current IP stack design, each
delegate must sign the packets that it processes,
and the end host can verify the signature of each
delegate that it is interested in.

4 Implementation

4.1 Overview

Our general approach to implementation was
to start with the source code of the provided
SampleOCD module which already implemented
the necessary interfaces for an OCD in the
OCALA APIL

By having most of the OCALA specific OCD
interfaces already implemented, we were able to

focus on the sections of the source code which
related directly to the DOA specific interfaces.
Specifically, this involved adapting the various
send and receive methods and implementing the
DOA specific control plane and packet structures.

4.2 DOA Specific Components

In this section, we present the DOA specific
components that we needed to implement. The
headings correspond to class names, and their
specifications are provided here as documentation
for our code so that other developers can build
upon what we’ve implemented.

DOAOCD
= Qverall parent class, implements the OCD
API required by OCALA

DOAContext
= Reads a configuration file upon setup, for
delegate and port information
= Contains DOA specific information about
this host, including: eid, IP and erecord if
desired
= ReceiveDOA() method
from the overlay tunnel
o Forwards DNS/DHT reply packets to
DOAStatelnfo for processing
o Creates new DOAStatelnfo objects for
new incoming connections
o Passes received data packets upwards
to the OCIState object corresponding
to the connection
=  SendDOA() sends a DOA data packet to the
end host specified by a DOAStateInfo
o If not yet resolved, asks DOAStatelnfo to
queue messages for later, and starts off a
DHT resolution cascade

receives packets

DOAStatelnfo

= Contains state info for each connection from
this host to another host including end host
eid

= (Calls DHT lookups to resolve the end host
eid to a stack of eid’s and IP addresses

= Keeps track if the eid has been fully resolved
or not, and keeps queuing outgoing packets
while the eid is not resolved (while it waits
for more DHT replies)



DOADNS
= Sends DNS registration packet
= Sends DNS resolve request packets
= Hard-coded to send direct packets to a stub
DNS server (DOADNSServer)

DOADHT
= Sends DHT registration packet
= Sends DHT resolve request packets.
= Hard-coded to send direct packets to a stub
DHT server (DOADHTServer)

4.3 Example: The Lifespan of Ping Packet
The following is a summary of the path a ping

packet takes between two DOA end hosts using

our module running over OCALA.

Host A (“hosta.doa”) pings Host B (“hostb.doa”):

(begin control plane)

1. Ping sends DNS

“hostb.doa”.

2. OCALA proxy captures DNS lookup, sees
that it matches the DOA pattern, and calls
the tunnel setup method of the DOA overlay,
with the URL being “hostb.doa”.

3. DOAStateInfo uses DOADNSServer to
resolve “hostb.doa” to eid b.

4. When DNS reply is received:

a. A mapping is added in DOAContext
between the destination eid and the
corresponding DOAStateInfo

b. A DHT resolution cascade begins

5. Once the eid stack has resolved to the next-
hop IP address, DOAStatelnfo notifies
OCALA that tunnel setup is complete.

6. OCALA then creates fake IP address /Pf,
and adds a mapping between it and its
corresponding DOAStatelnfo.

7. OCALA sends a fake DNS reply to ping
with fake IP address /Pf.

lookup packet for

(end control plane, begin data plane)

8. Ping sends a ping packet to /Pf.

9. OCALA captures packet, sees fake IP
address, looks up mapping to DOAStatelnfo,
and calls DOAOCD’s send() method .

10. DOAOCD calls DOAContext’s sendDOA()
method which creates a DOA packet from

the original packet and the tunnel’s
DOAStatelnfo, and sends it to the next-hop
IP address on the DOA port.

11. Host B’s DOAOCD is listening on the DOA
port and receives the ping DOA packet.

12. Since Host B’s context doesn’t have an entry
for the incoming end host A, it creates a new
DOAStatelnfo and then it adds an entry
mapping the host to the state info.

13. It then strips the DOA header from the
packet and passes the packet up to the
OCALA receive() method.

14. OCALA inserts a fake source IP address and
sends the packet to the ICMP receive
mechanism which immediately sends a
response.

15. OCALA captures the packet and passes it
back to DOAOCD which tries to send it, but
the DOAStateInfo hasn’t resolved source A
to an IP address yet so it queues the packet
and does a DHT resolve for Host A.

16. Upon completing the resolution, it does
something like step 11 above (creates a DOA
packet and sends it).

17. Host A’s DOAOCD is listening on the port,
recognizes Host B’s eid in the source field,
strips the DOA header and sends the packet
to OCALA with an indication of which
tunnel the packet was received over.

18. OCALA maps the tunnel back to the ping
application, and sends the ping reply to ping.

5 Evaluation

In order to evaluate the feasibility of
developing modules for OCALA, we both tested
the network performance of our DOA plug-in, and
examined the amount of effort needed to develop
the DOA module from concept to completion.

5.1 Performance

Our network performance tests were run on
three computers in a variety of DOA and non-
DOA configurations. Two of the computers were
laptops running off the same 802.11g wireless
router at 54Mb/s. The third computer, which
always acted as the ping responder and fileserver,
was connected to the network via a 100Mbps
Ethernet link. These tests are not meant to be
representative of any real usage situations, but
rather to illustrate performance differences



between the various configurations. We focused
our network performance tests specifically on the
latency and throughput of our system.

5.1.1 Latency
To test latency we ran three trials of 50 pings
each for different network configurations with an
increasing number of delegates on the forward
path, with the end hosts remaining the same. We
recorded and averaged the average latency from
each of the trials. Our network configurations
were as follows:
1) no OCALA running (no delegates)
2) OCALA+DOA, no delegates
3) OCALA+DOA, one delegate on
forward path
4) OCALA+DOA,
forward path.

two delegates on

The figure below shows our test results, with
the number of delegates increasing to the right.
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Figure 2. Average Latency for 50 Pings.

The results here were slightly surprising.
While it is clear that adding more hops to the
network path (i.e. delegates) should increase
latency, the difference in latency between a non-
OCALA ping and an OCALA ping with no
delegates was more than tenfold. The relative
slowdown of adding delegates once OCALA was
running is much smaller in comparison, although
still substantial.

The results of this test indicate that OCALA or
our DOA modules itself adds a substantial amount

of latency to the system. Additionally, each
delegate in our test system added latency as one
would expect. However, as our tests were run
using a small network with very short link
latencies, the relative importance of these factors
may not be clear from the tests. For example,
delegates spread out around the world would most
likely be much more expensive to add than our
tests show. In addition, although the largest
change in latency in our tests was between not
running OCALA and running OCALA, in a
network where link latencies are greater than the
latency introduced by OCALA, the OCALA
latency would cease to be the dominant factor.
5.1.2. Throughput
Our throughput tests were run by using
wget on a laptop to download a 1.4MB file from
the fileserver. As in the latency tests, we ran
different configurations and measured the
performance for each. For throughput testing, our
configurations were as follows:

1) No OCALA (no delegates)

2) OCALA+DOA, no delegates

3) OCALA+DOA, one delegate on

return (download) path
4) OCALA+DOA, two delegates on
return (download) path

The results of our tests are shown in Figure 3
below.
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Download



The data from our throughput tests indicates
that the only variable effecting throughput is
whether or the connection is tunneled over
OCALA+DOA.  Although this was at first
surprising, is seems that the bottleneck in the
system is the data transmission rate of
OCALA+DOA itself, not the network links. We
hypothesize that this is either due to the inherent
slowness of user-level sockets code, or due to
extraneous buffer copies and per-byte data
operations. However, even with the performance
hit introduced by the OCALA/DOA system, we
were able to obtain a throughput better than home
internet link upload rates. It is slow, but still
useable.

5.2 Ease of Development

The entirety of this project took 2 months
from concept to final implementation and testing.
The first full month required referencing the
OCALA website [1], having email discussions
with the OCALA team, reading the DOA papers
[2][4], and having discussions with the DOA team.
Once we had a deep understanding of the OCALA
and the DOA project architectures, the
implementation of the DOA OCALA module took
approximately two weeks of heavy duty coding.
Our final product contained approximately 1,500
lines of code, compared to the approximately
1,000 lines of code for SampleOCD. We found
that it was easy to start with the provided
SampleOCD implementation and replace relevant
methods with code of our own. This saved us
from having to learn the specifics of the OCALA
API from scratch. Our learning curve also
involved learning the details of the existing DOA
implementation, but another research group
wanting to use OCALA to prototype their own
overlay architecture would presumably skip this
step. The fact that we were able to go from having
no knowledge of either OCALA or DOA to having
a working DOA plug-in for OCALA as a class
project indicates that the OCALA framework is
indeed generic, flexible and easy to use.

6 Conclusion

Our findings indicate that OCALA is indeed a
good framework for which to develop a DOA
plug-in and that our DOA module, while slow,
was able to demonstrate the benefits of DOA’s

explicit delegation in an easily deployable package
which could be tested on many systems.
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